Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

2012

Electromagnetics and Photonics

Articles 1 - 30 of 37

Full-Text Articles in Physics

Plasmonic And Photonic Designs For Light Trapping In Thin Film Solar Cells, Liming Ji Dec 2012

Plasmonic And Photonic Designs For Light Trapping In Thin Film Solar Cells, Liming Ji

Graduate Theses and Dissertations

Thin film solar cells are promising to realize cheap solar energy. Compared to conventional wafer cells, they can reduce the use of semiconductor material by 90%. The efficiency of thin film solar cells, however, is limited due to insufficient light absorption. Sufficient light absorption at the bandgap of semiconductor requires a light path more than 10x the thickness of the semiconductor. Advanced designs for light trapping are necessary for solar cells to absorb sufficient light within a limited volume of semiconductor. The goal is to convert the incident light into a trapped mode in the semiconductor layer.

In this dissertation, …


Degenerate Parallel Conducting Layer And Conductivity Type Conversion Observed From P-Ge1 - YSnY (Y = 0.06%) Grown On N-Si Substrate, Mee-Yi Ryu, Yung Kee Yeo, M. Ahoujja, Thomas R. Harris, Richard T. Beeler, John Kouvetakis Sep 2012

Degenerate Parallel Conducting Layer And Conductivity Type Conversion Observed From P-Ge1 - YSnY (Y = 0.06%) Grown On N-Si Substrate, Mee-Yi Ryu, Yung Kee Yeo, M. Ahoujja, Thomas R. Harris, Richard T. Beeler, John Kouvetakis

Faculty Publications

Electrical properties of p-Ge1−ySny (y = 0.06%) grown on n-Si substrate were investigated through temperature-dependent Hall-effect measurements. It was found that there exists a degenerate parallel conducting layer in Ge1−ySny/Si and a second, deeper acceptor in addition to a shallow acceptor. This parallel conducting layer dominates the electrical properties of the Ge1−ySny layer below 50 K and also significantly affects those properties at higher temperatures. Additionally, a conductivity type conversion from p to n was observed around 370 K for this sample. A two-layer conducting model was used …


Serpentine Low Loss Trapezoidal Silica Waveguides On Silicon, Xiaomin Zhang, Mark Harrison, Audrey Harker, Andrea M. Armani Sep 2012

Serpentine Low Loss Trapezoidal Silica Waveguides On Silicon, Xiaomin Zhang, Mark Harrison, Audrey Harker, Andrea M. Armani

Engineering Faculty Articles and Research

We report the fabrication and characterization of straight and serpentine low loss trapezoidal silica waveguides integrated on a silicon substrate. The waveguide channel was defined using a dual photo-lithography and buffered HF etching and isolated from the silicon substrate using an isotropic silicon etchant. The waveguide is air-clad and thus has a core-cladding effective index contrast of approximately 25%. Measured at 658, 980 and 1550nm, the propagation loss was found to be 0.69, 0.59, and 0.41dB/cm respectively, with a critical bending radius less than 375μm. The waveguide’s polarization behavior was investigated both theoretically and experimentally. Additionally, the output power shows …


Spectral Analysis Of Encrypted Chaotic Signals Using Fast Fourier Transforms And Laboratory Spectral Analyzers, Monish Ranjan Chatterjee, Abhinay Kundur Aug 2012

Spectral Analysis Of Encrypted Chaotic Signals Using Fast Fourier Transforms And Laboratory Spectral Analyzers, Monish Ranjan Chatterjee, Abhinay Kundur

Electrical and Computer Engineering Faculty Publications

The use of acousto-optic chaos, as manifested via first-order feedback in an acousto-optic Bragg cell, in encrypting a message wave and subsequently recovering the message in the receiver using a chaotic heterodyne strategy, has been reported recently [1-3]. In examining the dynamical system analytically using computer simulation, (expected) modulated chaos waveforms are obtained within specified observation windows.

Because of the relatively random nature inherent in chaos waveforms, it is essentially impossible to ascertain from the visual display of the chaotic wave whether a given message signal has in fact modulated the chaotic "carrier". In fact, it has been observed from …


Commissioning Of The Asta Laser Lab With Uv Pulse Length Characterization, Daniel Kelley, Jeff Corbett Aug 2012

Commissioning Of The Asta Laser Lab With Uv Pulse Length Characterization, Daniel Kelley, Jeff Corbett

STAR Program Research Presentations

The Linac Coherent Light Source (LCLS) at SLAC depends on a photocathode electron gun to provide the linear accelerator with the raw material – electrons – used for making X-ray laser pulses. The photocathode used in the LCLS Injector is a clean copper plate in high vacuum. When the cathode is struck with high energy UV light, electrons are liberated from its surface and then accelerated down the linac with radio-frequency electric fields. These fast-moving bunches of electrons are directed through an undulator magnet to radiate X-ray light.

Although scientists have been using photocathode techniques at SLAC for 25 years, …


Switch Yard Operation In Thermal Power Plant(Katpp Jhalawar Rajasthan), Radhey Shyam Meena Er. Jul 2012

Switch Yard Operation In Thermal Power Plant(Katpp Jhalawar Rajasthan), Radhey Shyam Meena Er.

Radhey Shyam Meena

Switchyard Provides the facilities for switching ,protection & Control of electric power. To handle high Voltage power with proper Safety measures. To isolate the noises coming from the grid with true 50Hz power SWITCH YARD IS IMPORTANT PART IN THERMAL PLANT. IN KALISINDH THERMAL 400KV AND 220KV SWITCH YARD LOCATED.


Application Of Chebyshev Formalism To Identify Nonlinear Magnetic Field Components In Beam Transport System, Michael Spata Jul 2012

Application Of Chebyshev Formalism To Identify Nonlinear Magnetic Field Components In Beam Transport System, Michael Spata

Physics Theses & Dissertations

An experiment was conducted at Jefferson Lab's Continuous Electron Beam Accelerator Facility to develop a beam-based technique for characterizing the extent of the nonlinearity of the magnetic fields of a beam transport system. Horizontally and vertically oriented pairs of air-core kicker magnets were simultaneously driven at two different frequencies to provide a time-dependent transverse modulation of the beam orbit relative to the unperturbed reference orbit. Fourier decomposition of the position data at eight different points along the beamline was then used to measure the amplitude of these frequencies. For a purely linear transport system one expects to find solely the …


The Effect Of Polarization And Ingan Quantum Well Shape In Multiple Quantum Well Light Emitting Diode Heterostructures, Patrick M. Mcbride Jun 2012

The Effect Of Polarization And Ingan Quantum Well Shape In Multiple Quantum Well Light Emitting Diode Heterostructures, Patrick M. Mcbride

Master's Theses

Previous research in InGaN/GaN light emitting diodes (LEDs) employing semi-classical drift-diffusion models has used reduced polarization constants without much physical explanantion. This paper investigates possible physical explanations for this effective polarization reduction in InGaN LEDs through the use of the simulation software SiLENSe. One major problem of current LED simulations is the assumption of perfectly discrete transitions between the quantum well (QW) and blocking layers when experiments have shown this to not be the case. The In concentration profile within InGaN multiple quantum well (MQW) devices shows much smoother and delayed transitions indicative of indium diffusion and drift during …


Inductive Metal Identification, Paul Maggi Jun 2012

Inductive Metal Identification, Paul Maggi

Electrical Engineering

This project focuses on creating a device to differentiate between various types of metals via magnetic induction. Magnetic induction is used because it is both non-optical and non-contact. It achieves this by generating a varying magnetic field, which induces eddy currents in the metal. These eddy currents produce small disturbances in the surrounding magnetic field, which can be sensed with Hall Effect Sensors (HES). The primary challenge in this project was generating a sufficiently strong magnetic field to detectable disturbances. In order to achieve better results, a stronger magnetic field must be used as well as more sensitive Hall Effect …


Day/Night Band Imager For A Cubesat, Eric Stanton Jun 2012

Day/Night Band Imager For A Cubesat, Eric Stanton

Electrical Engineering

Day/Night Band (DNB) earth sensing and meteorological systems like the Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS) provide visible wavelength imagery 24 hours a day that is used primarily for cloud imaging in support of weather forecasting. This paper describes a compact push-broom imager that meets low light imaging requirements for DMSP OLS and the NOAA/NASA Joint Polar Satellite System (JPSS) as documented in the Integrated Operational Requirements Document [1] (IORD) including the imager design, system level concepts of operation for data collection, radiometric and spatial calibration, and data transmission to Earth. This small, lightweight imager complies with …


Electrohydrodynamic Enhancement Of Heat Transfer And Mass Transport In Gaseous Media, Bulk Dielectric Liquids And Dielectric Thin Liquid Films, Seyed Reza Mahmoudi May 2012

Electrohydrodynamic Enhancement Of Heat Transfer And Mass Transport In Gaseous Media, Bulk Dielectric Liquids And Dielectric Thin Liquid Films, Seyed Reza Mahmoudi

Electronic Thesis and Dissertation Repository

Controlling transport phenomena in liquid and gaseous media through electrostatic forces has brought new important scientific and industrial applications. Although numerous EHD applications have been explored and extensively studied so far, the fast-growing technologies, mainly in the semiconductor industry, introduce new challenges and demands. These challenges require enhancement of heat transfer and mass transport in small scales (sometimes in molecular scales) to remove highly concentrated heat fluxes from reduced size devices. Electric field induced flows, or electrohydrodynamics (EHD), have shown promise in both macro and micro-scale devices.

Several existing problems in EHD heat transfer enhancements were investigated in this thesis. …


Dynamical Model Of Harmonic Generation In Centrosymmetric Semiconductors At Visible And Uv Wavelengths, Michael Scalora, Maria Antonietta Vincenti, Domenico De Ceglia, N. Akozbek, Vito Roppo, M. J. Bloemer, Joseph W. Haus May 2012

Dynamical Model Of Harmonic Generation In Centrosymmetric Semiconductors At Visible And Uv Wavelengths, Michael Scalora, Maria Antonietta Vincenti, Domenico De Ceglia, N. Akozbek, Vito Roppo, M. J. Bloemer, Joseph W. Haus

Electrical and Computer Engineering Faculty Publications

We study second and third harmonic generation in centrosymmetric semiconductors at visible and UV wavelengths in bulk and cavity environments. Second harmonic generation is due to a combination of spatial symmetry breaking, the magnetic portion of the Lorentz force, and quadrupolar contributions from inner core electrons. The material is assumed to have a nonzero, third-order nonlinearity that gives rise to most of the third harmonic signal. Using the parameters of bulk silicon we predict that cavity environments modify the dependence of second harmonic generation on incident angle, while improving third harmonic conversion efficiency by several orders of magnitude relative to …


Performance Analysis Of Nitride Alternative Plasmonic Materials For Localized Surface Plasmon Applications, U. Guler, Gururaj V. Naik, Alexandra Boltasseva, Vladimir M. Shalaev, Alexander V. Kildishev Apr 2012

Performance Analysis Of Nitride Alternative Plasmonic Materials For Localized Surface Plasmon Applications, U. Guler, Gururaj V. Naik, Alexandra Boltasseva, Vladimir M. Shalaev, Alexander V. Kildishev

U. Guler

We consider methods to define the performance metrics for different plasmonic materials to be used in localized surface plasmon applications. Optical efficiencies are shown to be better indicators of performance as compared to approximations in the quasistatic regime. The near-field intensity efficiency, which is a generalized form of the well-known scattering efficiency, is a more flexible and useful metric for local-field enhancement applications. We also examine the evolution of the field enhancement from a particle surface to the far-field regime for spherical nanoparticles with varying radii. Titanium nitride and zirconium nitride, which were recently suggested as alternative plasmonic materials in …


Nanotopography Influences Adhesion, Spreading, And Self-Renewal Of Human Embryonic Stem Cells, Weiqiang Chen, Luis G. Villa-Diaz, Yubing Sun, Shinuo Weng, Jin Koo Kim, Raymond H. W. Lam, Lin Han, Rong Fan, Paul H. Krebsbach, Jianping Fu Apr 2012

Nanotopography Influences Adhesion, Spreading, And Self-Renewal Of Human Embryonic Stem Cells, Weiqiang Chen, Luis G. Villa-Diaz, Yubing Sun, Shinuo Weng, Jin Koo Kim, Raymond H. W. Lam, Lin Han, Rong Fan, Paul H. Krebsbach, Jianping Fu

Weiqiang Chen

Human embryonic stem cells (hESCs) have great potentials for future cell-based therapeutics. However, their mechanosensitivity to biophysical signals from the cellular microenvironment is not well characterized. Here we introduced an effective microfabrication strategy for accurate control and patterning of nanoroughness on glass surfaces. Our results demonstrated that nanotopography could provide a potent regulatory signal over different hESC behaviors, including cell morphology, adhesion, proliferation, clonal expansion, and self-renewal. Our results indicated that topological sensing of hESCs might include feedback regulation involving mechanosensory integrin-mediated cell matrix adhesion, myosin II, and E-cadherin. Our results also demonstrated that cellular responses to nanotopography were cell-type …


Information Encryption And Retrieval In Mid-Rf Range Using Acousto-Optic Chaos, Monish Ranjan Chatterjee, Abhinay Kundur Apr 2012

Information Encryption And Retrieval In Mid-Rf Range Using Acousto-Optic Chaos, Monish Ranjan Chatterjee, Abhinay Kundur

Electrical and Computer Engineering Faculty Publications

In recent work, low-frequency AC signal encryption, decryption and retrieval using system-parameter based keys at the receiver stage of an acousto-optic (A-O) Bragg cell under first-order feedback have been demonstrated [1,2]. The corresponding nonlinear dynamics have also been investigated using the Lyapunov exponent and the so-called bifurcation maps [3]. The results were essentially restricted to A-O chaos around 10 KHz, and (baseband) signal bandwidths in the 1-4 KHz range. The results have generally been satisfactory, and parameter tolerances (prior to severe signal distortion at the output) in the ±5% - ±10% range have been obtained.

Periodic AC waveforms, and a …


Low-Loss Meta-Atom For Improved Resonance Response, Derrick Langley, Ronald Coutu Jr., Peter J. Collins Mar 2012

Low-Loss Meta-Atom For Improved Resonance Response, Derrick Langley, Ronald Coutu Jr., Peter J. Collins

Faculty Publications

Measurements of a meta-atom integrated with a low noise amplifier into the split-ring resonator are presented. A comparison is made between baseline meta-atoms and one integrated with a GaAs low noise amplifier. S-parameter measurements in a RF strip-line show the resonant frequency location. The resonance null is more prominent for the integrated meta-atom. Biasing the low noise amplifier from 0 to 7 VDC showed that the resonant null improved with biasing voltage. As the biasing voltage increases, the transmission null reduced from -11.82 to -23.21 dB for biases from 0 to 7 VDC at resonant frequency.


Vertical Field Switching Blue Phase Liquid Crystals For Field Sequential Color Displays, Hui-Chuan Cheng Jan 2012

Vertical Field Switching Blue Phase Liquid Crystals For Field Sequential Color Displays, Hui-Chuan Cheng

Electronic Theses and Dissertations

Low power consumption is a critical requirement for all liquid crystal display (LCD) devices. A field sequential color (FSC) LCD was proposed by using red (R), green (G) and blue (B) LEDs and removing the lossy component of color filters which only transmits ~30% of the incoming white light. Without color filters, FSC LCDs exhibit a ~3X higher optical efficiency and 3X higher resolution density as compared to the conventional color filters-based LCDs. However, color breakup (CBU) is a most disturbing defect that degrades the image quality in FSC displays. CBU can be observed in stationary or moving images. It …


Non-Reciprocal Wave Transmission In Integrated Waveguide Array Isolators, Tony Yatming Ho Jan 2012

Non-Reciprocal Wave Transmission In Integrated Waveguide Array Isolators, Tony Yatming Ho

Electronic Theses and Dissertations

Non-reciprocal wave transmission is a phenomenon witnessed in certain photonic devices when the wave propagation dynamics through the device along one direction differs greatly from the dynamics along the counter-propagating direction. Specifically, it refers to significant power transfer occurring in one direction, and greatly reduced power transfer in the opposite direction. The resulting effect is to isolate the directionality of wave propagation, allowing transmission to occur along one direction only. Given the popularity of photonic integrated circuits (PIC), in which all the optical components are fabricated on the same chip so that the entire optical system can be made more …


Injection-Locked Semiconductor Lasers For Realization Of Novel Rf Photonics Components, Nazanin Hoghooghi Jan 2012

Injection-Locked Semiconductor Lasers For Realization Of Novel Rf Photonics Components, Nazanin Hoghooghi

Electronic Theses and Dissertations

This dissertation details the work has been done on a novel resonant cavity linear interferometric modulator and a direct phase detector with channel filtering capability using injection-locked semiconductor lasers for applications in RF photonics. First, examples of optical systems whose performance can be greatly enhanced by using a linear intensity modulator are presented and existing linearized modulator designs are reviewed. The novel linear interferometric optical intensity modulator based on an injection-locked laser as an arcsine phase modulator is introduced and followed by numerical simulations of the phase and amplitude response of an injection-locked semiconductor laser. The numerical model is then …


Third Order Nonlinearity Of Organic Molecules, Honghua Hu Jan 2012

Third Order Nonlinearity Of Organic Molecules, Honghua Hu

Electronic Theses and Dissertations

The main goal of this dissertation is to investigate the third-order nonlinearity of organic molecules. This topic contains two aspects: two-photon absorption (2PA) and nonlinear refraction (NLR), which are associated with the imaginary and real part of the third-order nonlinearity (χ (3)) of the material, respectively. With the optical properties tailored through meticulous molecular structure engineering, organic molecules are promising candidates to exhibit large third-order nonlinearities. Both linear (absorption, fluorescence, fluorescence excitation anisotropy) and nonlinear (Z-scan, two-photon fluorescence, pump-probe) techniques are described and utilized to fully characterize the spectroscopic properties of organic molecules in solution or solid-state form. These properties …


Submillisecond-Response Blue Phase Liquid Crystals For Display Applications, Kuan Ming Chen Jan 2012

Submillisecond-Response Blue Phase Liquid Crystals For Display Applications, Kuan Ming Chen

Electronic Theses and Dissertations

With exploding growth of information exchanges between people, display has become indispensable in our daily lives. After decades of intensive research and development in materials and devices, and massive investment in manufacturing technologies, liquid crystal display (LCD) has overcome various obstacles and achieved the performance we need, such as wide viewing angle, high contrast ratio, and high resolution, etc. These excellent performances make LCD prevailed in every perspective. Recently, with the demands of energy conservation, a greener LCD with lower power consumption is desired. In order to achieve this goal, new energy-effective driving methods, such as field sequential color display, …


A Threshold-Based Approach To Calorimetry In Helium Droplets: Measurement Of Binding Energies Of Water Clusters, William K. Lewis, Barbara A. Harruff-Miller, Michael A. Gord, Joseph R. Gord, Elena A. Guliants, Christopher E. Bunker Jan 2012

A Threshold-Based Approach To Calorimetry In Helium Droplets: Measurement Of Binding Energies Of Water Clusters, William K. Lewis, Barbara A. Harruff-Miller, Michael A. Gord, Joseph R. Gord, Elena A. Guliants, Christopher E. Bunker

Electrical and Computer Engineering Faculty Publications

Helium dropletbeam methods have emerged as a versatile technique that can be used to assemble a wide variety of atomic and molecular clusters. We have developed a method to measure the binding energies of clusters assembled in helium droplets by determining the minimum droplet sizes required to assemble and detect selected clusters in the spectrum of the dopeddropletbeam. The differences in the droplet sizes required between the various multimers are then used to estimate the incremental binding energies. We have applied this method to measure the binding energies of cyclic waterclusters from the dimer to the tetramer. We obtain measured …


Time Dynamics Of Self-Pumped Reflection Gratings In A Photorefractive Polymer, Partha P. Banerjee, S. H. Buller, C. M. Liebig, S. A. Basun, Gary Cook, Dean R. Evans, Pierre-Alexandre Blanche, J. Thomas, Cory W. Christenson, N. Peyghambarian Jan 2012

Time Dynamics Of Self-Pumped Reflection Gratings In A Photorefractive Polymer, Partha P. Banerjee, S. H. Buller, C. M. Liebig, S. A. Basun, Gary Cook, Dean R. Evans, Pierre-Alexandre Blanche, J. Thomas, Cory W. Christenson, N. Peyghambarian

Electrical and Computer Engineering Faculty Publications

The time dynamics of self-pumped reflection gratings in a commonly used photorefractive polymer PDCST:PVK:ECZ-BBP:C60 with no additional electron sources or traps is investigated. While holes are normally the mobile charges and responsible for grating formation, our experimental observations, analyzed using multi-exponential fitting curves, show evidence of electrons in addition to holes as charge carriers, particularly above an applied field of 40 V/μm.

The dependence of effective carrier mobilities on the applied electric field, deduced from experimental results, show stronger field dependence of electron mobility at high electric fields. At an applied field of 70 V/μm, electron and hole mobilities become …


Examination Of The Nonlinear Dynamics Of A Chaotic Acousto-Optic Bragg Modulator With Feedback Under Signal Encryption And Decryption, Mohammed A. Al-Saedi, Monish Ranjan Chatterjee Jan 2012

Examination Of The Nonlinear Dynamics Of A Chaotic Acousto-Optic Bragg Modulator With Feedback Under Signal Encryption And Decryption, Mohammed A. Al-Saedi, Monish Ranjan Chatterjee

Electrical and Computer Engineering Faculty Publications

An acousto-optic Bragg cell with first-order feedback, which exhibits chaotic behavior past the threshold for bistability, was recently examined for possible chaotic encryption and recovery of simple messages (such as low-amplitude periodic signals) applied via the bias input of the sound cell driver. We carry out a thorough examination of the nonlinear dynamics of the Bragg cell under intensity feedback for (i) dc variations of the feedback gain (β˜) and the phase shift parameter (α^ 0) and (ii) ac variations of α^ 0; total under signal encryption, investigating both from two different perspectives: (i) examining chaos in view of the …


High-Efficiency Blue Phase Liquid Crystal Displays, Yan Li Jan 2012

High-Efficiency Blue Phase Liquid Crystal Displays, Yan Li

Electronic Theses and Dissertations

Blue phase liquid crystals (BPLCs) have a delicate lattice structure existing between chiral nematic and isotropic phases, with a stable temperature range of about 2 K. But due to short coherent length, these self-assembled nano-structured BPLCs have a fast response time. In the past three decades, the application of BPLC has been rather limited because of its narrow temperature range. In 2002, Kikuchi et al. developed a polymer stabilization method to extend the blue-phase temperature range to more than 60 K. This opens a new gateway for display and photonic applications. In this dissertation, I investigate the material properties of …


Laser Filamentation Interaction With Materials For Spectroscopic Applications, Matthew Weidman Jan 2012

Laser Filamentation Interaction With Materials For Spectroscopic Applications, Matthew Weidman

Electronic Theses and Dissertations

Laser filamentation is a non-diffracting propagation regime consisting of an intense core that is surrounded by an energy reservoir. For laser ablation based spectroscopy techniques such as Laser Induced Breakdown Spectroscopy (LIBS), laser filamentation enables the remote delivery of high power density laser radiation at long distances. This work shows a quasiconstant filament-induced mass ablation along a 35 m propagation distance. The mass ablated is sufficient for the application of laser filamentation as a sampling tool for plasma based spectroscopy techniques. Within the scope of this study, single-shot ablation was compared with multi-shot ablation. The dependence of ablated mass on …


Commentary And Interpretations Of Tagore’S 'Ode To Africa', Monish Ranjan Chatterjee Jan 2012

Commentary And Interpretations Of Tagore’S 'Ode To Africa', Monish Ranjan Chatterjee

Electrical and Computer Engineering Faculty Publications

This is a commentary/interpretation of Rabindranath Tagore's poem "Ode to Africa."


An Investigation Of The Relationship Between Visual Effects And Object Identification Using Eye-Tracking, Jonathan Rosch Jan 2012

An Investigation Of The Relationship Between Visual Effects And Object Identification Using Eye-Tracking, Jonathan Rosch

Electronic Theses and Dissertations

The visual content represented on information displays used in training environments prescribe display attributes as brightness, color, contrast, and motion blur, but considerations regarding cognitive processes corresponding to these visual features require further attention in order to optimize the display for training applications. This dissertation describes an empirical study with which information display features, specifically color and motion blur reduction, were investigated to assess their impact in a training scenario involving visual search and threat detection. Presented in this document is a review of the theory and literature describing display technology, its applications to training, and how eye-tracking systems can …


Random Transformations Of Optical Fields And Applications, Thomas Kohlgraf-Owens Jan 2012

Random Transformations Of Optical Fields And Applications, Thomas Kohlgraf-Owens

Electronic Theses and Dissertations

The interaction of optical waves with material systems often results in complex, seemingly random fields. Because the fluctuations of such fields are typically difficult to analyze, they are regarded as noise to be suppressed. Nevertheless, in many cases the fluctuations of the field result from a linear and deterministic, albeit complicated, interaction between the optical field and the scattering system. As a result, linear systems theory (LST) can be used to frame the scattering problem and highlight situations in which useful information can be extracted from the fluctuations of the scattered field. Three fundamental problems can be posed in LST …


Applications Of Volume Holographic Elements In High Power Fiber Lasers, Apurva Jain Jan 2012

Applications Of Volume Holographic Elements In High Power Fiber Lasers, Apurva Jain

Electronic Theses and Dissertations

The main objective of this thesis is to explore the use of volume holographic elements recorded in photo-thermo-refractive (PTR) glass for power scaling of narrow linewidth diffraction-limited fiber lasers to harness high average power and high brightness beams. Single fiber lasers enable kW level output powers limited by optical damage, thermal effects and non-linear effects. Output powers can be further scaled using large mode area fibers, however, at the cost of beam quality and instabilities due to the presence of higher order modes. The mechanisms limiting the performance of narrow-linewidth large mode area fiber lasers are investigated and solutions using …