Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physics

First Temperature Observations With The Usu Very Large Rayleigh Lidar: An Examination Of Mesopause Temperatures, Leda Sox, Vincent B. Wickwar, Joshua P. Herron, Marcus J. Bingham, Lance W. Petersen, Matthew T. Emerick Dec 2012

First Temperature Observations With The Usu Very Large Rayleigh Lidar: An Examination Of Mesopause Temperatures, Leda Sox, Vincent B. Wickwar, Joshua P. Herron, Marcus J. Bingham, Lance W. Petersen, Matthew T. Emerick

Leda Sox

No abstract provided.


Upgraded Alo Rayleigh Lidar System And Its Improved Gravity Wave Measurements, Leda Sox, Vincent B. Wickwar, Joshua P. Herron, Marcus J. Bingham Jun 2012

Upgraded Alo Rayleigh Lidar System And Its Improved Gravity Wave Measurements, Leda Sox, Vincent B. Wickwar, Joshua P. Herron, Marcus J. Bingham

Leda Sox

The Rayleigh-Scatter lidar system at the Atmospheric Lidar Observatory (ALO) on the Utah State campus is currently going through a series of upgrades to significantly improve its observational abilities. A specific objective of these upgrades is to expand the altitude range over which backscattered photons can be collected. A second objective is to increase the sensitivity of the instrument to be able to analyze the raw data at finer temporal and/or spatial resolutions. By measuring relative densities, the system will be able to produce absolute temperatures and relative density perturbations, which illustrate gravity wave structures. Gravity wave studies will significantly …


Results From An Extremely Sensitive Rayleigh-Scatter Lidar, Leda Sox, Vincent B. Wickwar May 2012

Results From An Extremely Sensitive Rayleigh-Scatter Lidar, Leda Sox, Vincent B. Wickwar

Leda Sox

Rayleigh-Scatter lidar systems effectively use remote sensing techniques to continuously measure atmospheric regions, such as the mesosphere (45-100km) where in situ measurements are rarely possible. The Rayleigh lidar located at the Atmospheric Lidar Observatory (ALO) on the Utah State campus is currently undergoing upgrades to make it the most sensitive of its kind. Here, the important components of these upgrades and how they will effect the study of a particular atmospheric phenomena, atmospheric gravity waves, will be discussed. We will also summarize what has been done to the system during this year to bring us to the threshold of initial …


Observations With The Most Sensitive Rayleigh-Scatter Lidar, Leda Sox, Vincent B. Wickwar, Joshua P. Herron, Marcus J. Bingham Apr 2012

Observations With The Most Sensitive Rayleigh-Scatter Lidar, Leda Sox, Vincent B. Wickwar, Joshua P. Herron, Marcus J. Bingham

Leda Sox

The mesosphere is the most unexplored region of the atmosphere. Its altitude range of 50-85 km lies in between the reaches of data collecting instruments like weather balloons and satellites. For this reason, remote sensing systems, such as lidar, which are able to employ ground-based instruments to make extensive measurements in this difficult to detect region. The Rayleigh-scatter lidar at USU is currently being redeveloped to be the most powerful and sensitive of its kind. This type of lidar exploits light and particle interactions, like those that account for the blue color of the sky, to make relative density and …