Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Physics

Modeling Lithographic Quantum Dots And Donors For Quantum Computation And Simulation, Mitchell Ian Brickson Dec 2023

Modeling Lithographic Quantum Dots And Donors For Quantum Computation And Simulation, Mitchell Ian Brickson

Physics & Astronomy ETDs

Our first focus is on few-hole quantum dots in germanium. We use discontinous Galerkin methods to discretize and solve the equations of a highly detailed k·p model that describes these systems, enabling a better understanding of experimental magnetospectroscopy results. We confirm the expected anisotropy of single-hole g-factors and describe mechanisms by which different orbital states have different g-factors. Building on this, we show that the g-factors in Ge holes are suciently sensitive to details of the device electrostatics that magnetospectroscopy data can be used to make a prediction of the underlying confinement potential. The second focus is on designing quantum …


Super-Resolution Microscopy With Color Centers In Diamond, Forrest A. Hubert Aug 2023

Super-Resolution Microscopy With Color Centers In Diamond, Forrest A. Hubert

Optical Science and Engineering ETDs

This dissertation explores the development and application of diamond color centers, specifically the silicon-vacancy (SiV) and nitrogen-vacancy (NV) centers, in super-resolution microscopy and magnetic imaging techniques. It demonstrates the potential of SiV centers as photostable fluorophores in stimulated emission depletion (STED) microscopy, with a resolution of approximately 90 nm. The research also presents a method for nanoscale magnetic microscopy using NV centers by combining charge state depletion (CSD) microscopy with optically detected magnetic resonance (ODMR) to image magnetic fields produced by 30 nm iron-oxide nanoparticles. The individual magnetic feature width reaches ~100 nm while resolving magnetic field patterns from nanoparticles …


Nonequilibrium And Nonlinear Dynamics In Collective Spin Models And Implementations Using Quantum Feedback Control, Manuel H. Munoz Arias May 2022

Nonequilibrium And Nonlinear Dynamics In Collective Spin Models And Implementations Using Quantum Feedback Control, Manuel H. Munoz Arias

Physics & Astronomy ETDs

Out-of-equilibrium dynamics generalizes the study of ground states of quantum Hamiltonians at zero temperature, to that of dynamical quasi-steady states of quantum systems far from equilibrium. In this dissertation I discuss dynamical quantum phase transitions and out-of-equilibrium phases of matter in models of collective spins with multi-body interactions. These models, based on collective degrees of freedom, allow an exact description of the thermodynamic limit via the mean-field description. In this limit, the nonequilibrium dynamics of properties of quantum states is mapped to the nonlinear dynamics of classical variables, and thus it can be analyzed using tools from the theory of …


An Expanded Model Of Unmatter From Neutrosophic Logic Perspective: Towards Matter-Spirit Unity View, Florentin Smarandache, Victor Christianto, Robert Neil Boyd Aug 2020

An Expanded Model Of Unmatter From Neutrosophic Logic Perspective: Towards Matter-Spirit Unity View, Florentin Smarandache, Victor Christianto, Robert Neil Boyd

Branch Mathematics and Statistics Faculty and Staff Publications

In Neutrosophic Logic, a basic assertion is that there are variations of about everything that we can measure; the variations surround three parameters called T, I, F (truth, indeterminacy, falsehood) which can take a range of values. A previous paper in IJNS, 2020 shortly reviews the links among aether and matter creation from the perspective of Neutrosophic Logic. In any case, matter creation process in nature stays a major puzzle for physicists, scientists and other science analysts. To this issue neutrosophic logic offers an answer: "unmatter." This paper examines an extended model of unmatter, to incorporate issue soul solidarity. So, …


Mid-Ir Optical Refrigeration And Radiation Balanced Lasers, Saeid Rostami Apr 2020

Mid-Ir Optical Refrigeration And Radiation Balanced Lasers, Saeid Rostami

Optical Science and Engineering ETDs

This dissertation reports recent advances in mid-infrared (mid-IR) optical refrigeration and Radiation Balanced Lasers (RBLs). The first demonstration of optical refrigeration in Ho:YLF and Tm:YLF crystals as promising mid-IR laser cooling candidates is reported. Room temperature laser cooling efficiency of Tm- and Ho-doped crystals at different excitation polarization is measured and their external quantum efficiency and background absorption are extracted. Complete characterization of laser cooling samples is obtained via performing detailed low-temperature spectroscopic analysis, and their minimum achievable temperature as well as conditions to achieve laser cooling efficiency enhancement in mid-IR are investigated. By developing a Thulium-doped fiber amplifier, seeded …


Remark On Lehnert’S Revised Quantum Electrodynamics (Rqed) As An Alternative To Francesco Celani’S Et Al. Maxwell-Clifford Equations: With An Outline Of Chiral Cosmology Model And Its Role To Cmns, Florentin Smarandache, Victor Christianto, Yunita Umniyati Jan 2020

Remark On Lehnert’S Revised Quantum Electrodynamics (Rqed) As An Alternative To Francesco Celani’S Et Al. Maxwell-Clifford Equations: With An Outline Of Chiral Cosmology Model And Its Role To Cmns, Florentin Smarandache, Victor Christianto, Yunita Umniyati

Branch Mathematics and Statistics Faculty and Staff Publications

In a recent paper published in JCMNS in 2017, Francesco Celani, Di Tommaso & Vassalo argued that Maxwell equations rewritten in Clifford algebra are sufficient to describe the electron and also ultra-dense deuterium reaction process proposed by Homlid et al. Apparently, Celani et al. believed that their Maxwell-Clifford equations are an excellent candidate to surpass both Classical Electromagnetic and Zitterbewegung QM. Meanwhile, in a series of papers, Bo Lehnert proposed a novel and revised version of Quantum Electrodynamics (RQED) based on Proca equations. Therefore, in this paper, we gave an outline of Lehnert’s RQED, as an alternative framework to Celani …


Improving The Readout Of Semiconducting Qubits, Matthew Jon Curry Apr 2019

Improving The Readout Of Semiconducting Qubits, Matthew Jon Curry

Physics & Astronomy ETDs

Semiconducting qubits are a promising platform for quantum computers. In particular, silicon spin qubits have made a number of advancements recently including long coherence times, high-fidelity single-qubit gates, two-qubit gates, and high-fidelity readout. However, all operations likely require improvement in fidelity and speed, if possible, to realize a quantum computer.

Readout fidelity and speed, in general, are limited by circuit challenges centered on extracting low signal from a device in a dilution refrigerator connected to room temperature amplifiers by long coaxial cables with relatively high capacitance. Readout fidelity specifically is limited by the time it takes to reliably distinguish qubit …


Genetic Algorithm Design Of Photonic Crystals For Energy-Efficient Ultrafast Laser Transmitters, Troy A. Hutchins-Delgado Nov 2018

Genetic Algorithm Design Of Photonic Crystals For Energy-Efficient Ultrafast Laser Transmitters, Troy A. Hutchins-Delgado

Shared Knowledge Conference

Photonic crystals allow light to be controlled and manipulated such that novel photonic devices can be created. We are interested in using photonic crystals to increase the energy efficiency of our semiconductor whistle-geometry ring lasers. A photonic crystal will enable us to reduce the ring size, while maintaining confinement, thereby reducing its operating power. Photonic crystals can also exhibit slow light that will increase the interaction with the material. This will increase the gain, and therefore, lower the threshold for lasing to occur. Designing a photonic crystal for a particular application can be a challenge due to its number of …


Localization And Scrambling Of Quantum Information With Applications To Quantum Computation And Thermodynamics, Adrian Kristian Chapman Jul 2018

Localization And Scrambling Of Quantum Information With Applications To Quantum Computation And Thermodynamics, Adrian Kristian Chapman

Physics & Astronomy ETDs

As our demand for computational power grows, we encounter the question: "What are the physical limits to computation?" An answer is necessarily incomplete unless it can incorporate physics at the smallest scales, where we expect our near-term high-performance computing to occur. Microscopic physics -- namely, quantum mechanics -- behaves counterintuitively to our everyday experience, however. Quantum matter can occupy superpositions of states and build stronger correlations than are possible classically. This affects how quantum computers and quantum thermodynamic engines will behave.

Though these properties may seem to overwhelmingly defeat our attempts to build a quantum computer at-first-glance, what is remarkable …


Development Of Metallic Magnetic Calorimeters And Paramagnetic Alloys Of Ag And Er For Gamma-Ray Spectroscopy, Linh N. Le May 2018

Development Of Metallic Magnetic Calorimeters And Paramagnetic Alloys Of Ag And Er For Gamma-Ray Spectroscopy, Linh N. Le

Physics & Astronomy ETDs

A Metallic Magnetic Calorimeter (MMC) is a cryogenic calorimetric particle detector that employs a metallic paramagnetic alloy as the temperature sensor material. MMCs are used in many different applications, but this work will focus on their uses in high energy resolution gamma-ray spectroscopy. This technology is of great interest to the field of Nuclear Forensics and Nuclear Safeguards as a non-destructive assay for isotopic analysis of nuclear samples. The energy resolution of MMCs is an order of magnitude higher than the benchmark High Purity Germanium (HPGe) detectors that are currently used in the field and MMCs are also poised to …


Vibrational Relaxation Theory For Systems Embedded In Microscopically Specified Reservoirs, Anastasia Aemilia Ierides May 2018

Vibrational Relaxation Theory For Systems Embedded In Microscopically Specified Reservoirs, Anastasia Aemilia Ierides

Physics & Astronomy ETDs

This dissertation is a study of the theoretical framework of the practical as well as fundamental problem of the process of relaxation to equilibrium of quantum mechanical systems. The fundamental aspect is concerned with the simultaneous occurrence of decoherence and population equilibration. The practical aspect deals with experimental observations of vibrational relaxation of molecules embedded in liquids or solids. The systems include, but are not limited to, the nondegenerate dimer and harmonic oscillator, in one case weak and in the other strong, interaction with a thermal bath. The time dependence of the energy and the temperature dependence of the relaxation …


Gamma-Ray Metallic Magnetic Calorimeters With Nbta Passive Persistent Switches And Electroformed Au Absorbers, Ruslan Hummatov Dec 2017

Gamma-Ray Metallic Magnetic Calorimeters With Nbta Passive Persistent Switches And Electroformed Au Absorbers, Ruslan Hummatov

Physics & Astronomy ETDs

Metallic Magnetic Calorimeters (MMCs) are low temperature particle detectors which can be used for a wide range of applications including high-resolution γ -ray spectroscopy. High energy resolution in γ -ray spectroscopy is desired for Non Destructive Assay (NDA) of nuclear material and improved measurements of nuclear data. Our group has been developing γ -ray MMCs that should ultimately provide energy resolution more than an order of magnitude better than the benchmark detector technology, high purity germanium detectors (HPGe). Two components of these MMCs have been developed as a part of this dissertation: an on-chip passive superconducting persistent current switch and …


Universal Disorder In Organic Semiconductors Due To Fluctuations In Space Charge, Tzucheng Wu May 2017

Universal Disorder In Organic Semiconductors Due To Fluctuations In Space Charge, Tzucheng Wu

Physics & Astronomy ETDs

This thesis concerns the study of charge transport in organic semiconductors. These materials are widely used as thin-film photoconductors in copiers and laser printers, and for their electroluminescent properties in organic light-emitting diodes. Much contemporary research is directed towards improving the efficiency of organic photovoltaic devices, which is limited to a large extent by the spatial and energetic disorder that hinders the charge mobility. One contribution to energetic disorder arises from the strong Coulomb interactions between injected charges with one another, but to date this has been largely ignored. We present a mean-field model for the effect of mutual interactions …