Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Air Force Institute of Technology

2019

Discipline
Keyword
Publication
Publication Type

Articles 31 - 49 of 49

Full-Text Articles in Physics

The Non-Mechanical Beam Steering Of Light In Reflective Inverse Diffusion, Eric K. Nagamine Mar 2019

The Non-Mechanical Beam Steering Of Light In Reflective Inverse Diffusion, Eric K. Nagamine

Theses and Dissertations

Wavefront shaping is a technique that uses spatial light modulators to conjugate the phase of light incident on a rough surface, such that the light will refocus after reflection. This refocusing effect is called reflective inverse diffusion. There currently are two different approaches used to achieve reflective inverse diffusion: iterative methods and matrix methods. Iterative methods find one phase mask which allows for reflected light to be focused at a single, specific position, with results that are immediately available and continuously improving. Matrix methods calculate the complex matrix which describes the rough surface and allows for reflected light to be …


Variations Of Heavy Ion Abundances Relative To Proton Abundances In Large Solar Energetic Particle Events, Joseph F. Round Mar 2019

Variations Of Heavy Ion Abundances Relative To Proton Abundances In Large Solar Energetic Particle Events, Joseph F. Round

Theses and Dissertations

Past studies of heavy ions (Z>2) in large (E>10 MeV/nuc) gradual solar energetic particle (SEP) events have focused on elemental abundances relative to those of a single element, such as Fe or O, and have often neglected ionized H (the primary element used for space weather purposes). This work analyzes SEP abundances in a group of 15 large gradual SEP events from 2000 to 2015 across the energy range of 13.5-50.7 MeV. Hourly flux averages of He, C, O, Mg and Fe from the Advanced Composition Explorer/Solar Isotope Spectrometer (ACE/SIS) are compared to two-hour averages of H flux …


Source Term Estimation Of Atmospheric Pollutants Using An Ensemble Of Hysplit Concentration Simulations, Casey L. Zoellick Mar 2019

Source Term Estimation Of Atmospheric Pollutants Using An Ensemble Of Hysplit Concentration Simulations, Casey L. Zoellick

Theses and Dissertations

In support of Comprehensive Nuclear-Test-Ban Treaty (CTBT) monitoring and nuclear event detection, this study works toward source term estimation (STE) of dispersive pollutants using a novel method|an ensemble of forward trajectory concentration simulations using a meteorology-coupled dispersion model. Traditionally a mathematically and physically rigorous problem, STE of a plume of atmospheric pollutants can be solved in a variety of ways depending on what is known regarding the emission, but little has been studied on the sensitivity between the horizontal resolution of the meteorology data in relation to the dispersion model and the results derived from known concentrations at multiple locations. …


Partially Coherent Sources Generated From The Incoherent Sum Of Fields Containing Random-Width Bessel Functions, Milo W. Hyde Iv Mar 2019

Partially Coherent Sources Generated From The Incoherent Sum Of Fields Containing Random-Width Bessel Functions, Milo W. Hyde Iv

Faculty Publications

Using the criterion for a genuine cross-spectral density function, we demonstrate the realization of an ??-Bessel correlated source, which has only recently been achieved using the source’s coherent-mode representation. In addition, with just a simple change, we create a whole new class of partially coherent sources that have not been realized. We simulate the generation of these sources and compare the results to theoretical predictions to validate our analysis. The partially coherent sources described herein can easily be synthesized using spatial light modulators, and the approach presented in this Letter can be used to design sources for optical trapping, optical …


Direct Numerical Simulation Of Roughness Induced Hypersonic Boundary Layer Transition On A 7° Half-Angle Cone, Tara E. Crouch Mar 2019

Direct Numerical Simulation Of Roughness Induced Hypersonic Boundary Layer Transition On A 7° Half-Angle Cone, Tara E. Crouch

Theses and Dissertations

Direct numerical simulation (DNS) computational fluid dynamic (CFD) calculations were performed on a 30° slice of 7° half-angle cones with increasing nose radii bluntness at Mach 10 while simulating a distributed roughness pattern on the cone surface. These DNS computations were designed to determine if the non-modal transition behavior observed in testing performed at the Arnold Engineering Development Center (AEDC) Hypervelocity Wind Tunnel 9 was induced via distributed surface roughness. When boundary layer transition is dominated by second mode instabilities, an increase in nose radius delays the transition location downstream. However, blunt nose experiments indicated that as the nose radius …


Schlieren Imaging And Flow Analysis On A Cone/Flare Model In The Afrl Mach 6 Ludwieg Tube Facility, David A. Labuda Mar 2019

Schlieren Imaging And Flow Analysis On A Cone/Flare Model In The Afrl Mach 6 Ludwieg Tube Facility, David A. Labuda

Theses and Dissertations

High-speed Schlieren photography was utilized to visualize flow in the Air Force Research Laboratory Mach 6 Ludwieg tube facility. A 7° half-angle cone/flare model with variable nosetip radius and flare angle options was used in the study. Testing was performed at two driver tube pressures, generating freestream Reynolds numbers of 10.0x106 and 19.8x106 per meter. The variable-angle flare portion of the model provided a method for adjusting the intensity of the adverse pressure gradient at the cone/flare junction. As expected from existing literature, boundary layer separation along the cone frustum occurred further upstream as the magnitude of the …


Computational Aerothermodynamic Analysis Of Satellite Trans-Atmospheric Skip Entry Survivability, John J. Runco Mar 2019

Computational Aerothermodynamic Analysis Of Satellite Trans-Atmospheric Skip Entry Survivability, John J. Runco

Theses and Dissertations

Computational aerothermodynamic analysis is presented for a spacecraft in low Earth orbit performing an atmospheric skip entry maneuver. Typically, atmospheric reentry is a terminal operation signaling mission end-of-life and, in some instances, executed for spacecraft disposal. A variation on reentry – skip entry – is an aeroassisted trans-atmospheric maneuver in which a spacecraft utilizes the effects of aerodynamic drag in order to reduce energy prior to a terminal entry, pinpoint a targeted entry, or change orbital elements such as inclination. Spacecraft performing a skip entry enable new modes of maneuver to enhance operations in nominal or possibly contested mission environments. …


Examination Of Flow Dynamics And Passive Cooling In An Ultra Compact Combustor, Tylor C. Rathsack Mar 2019

Examination Of Flow Dynamics And Passive Cooling In An Ultra Compact Combustor, Tylor C. Rathsack

Theses and Dissertations

The Ultra Compact Combustor (UCC) promises to greatly reduce the size of a gas turbine engine’s combustor by altering the manner in which fuel is burnt. Differing from the common axial flow combustor, the UCC utilizes a rotating flow, coaxial to the engine’s primary axis, in an outboard circumferential cavity as the primary combustion zone. The present study investigates two key UCC facets required to further this combustor design. The first area of investigation is cooling of the Hybrid Guide Vane (HGV). This UCC specific hardware acts as a combustor center body that alters the exit flow angle and acts …


Wall Model Large Eddy Simulation Of A Diffusing Serpentine Inlet Duct, Ryan J. Thompson Mar 2019

Wall Model Large Eddy Simulation Of A Diffusing Serpentine Inlet Duct, Ryan J. Thompson

Theses and Dissertations

The modeling focus on serpentine inlet ducts (S-duct), as with any inlet, is to quantify the total pressure recovery and ow distortion after the inlet, which directly impacts the performance of a turbine engine fed by the inlet. Accurate prediction of S-duct ow has yet to be achieved amongst the computational fluid dynamics (CFD) community to improve the reliance on modeling reducing costly testing. While direct numerical simulation of the turbulent ow in an S-duct is too cost prohibitive due to grid scaling with Reynolds number, wall-modeled large eddy simulation (WM-LES) serves as a tractable alternative. US3D, a hypersonic research …


Investigation Of Endwall Vortex Manipulation In High Lift Turbines Caused By Active Endwall Forcing, Horatio J. Babcock Mar 2019

Investigation Of Endwall Vortex Manipulation In High Lift Turbines Caused By Active Endwall Forcing, Horatio J. Babcock

Theses and Dissertations

With the increased demand for lighter, more fuel efficient and smaller gas turbine engines, the impetus to reduce the weight and size of the turbine has become apparent. One approach to reduce this weight is to reduce the number of blades in the turbine. However, to maintain power output, each blade must be capable of supporting a greater amount of lift. While several high-lift turbine profiles have been detailed in literature, most of these profiles have increased endwall losses, despite their desirable mid-span characteristics. To mitigate this endwall loss, a number of active and passive flow approaches have been studied …


Initial Stage Of Fluid-Structure Interaction Of A Celestial Icosahedron Shaped Vacuum Lighter Than Air Vehicle, Dustin P. Graves Mar 2019

Initial Stage Of Fluid-Structure Interaction Of A Celestial Icosahedron Shaped Vacuum Lighter Than Air Vehicle, Dustin P. Graves

Theses and Dissertations

The analysis of a celestial icosahedron geometry is considered as a potential design for a Vacuum Lighter than Air Vehicle (VLTAV). The goal of the analysis is ultimately to understand the initial fluid-structure interaction of the VLTAV and the surrounding airflow. Up to this point, previous research analyzed the celestial icosahedron VLTAV in relation to withstanding a symmetric sea-level pressure applied to the membrane of the structure. This scenario simulates an internal vacuum being applied in the worst-case atmospheric environmental condition. The next step in analysis is to determine the aerodynamic effects of the geometry. The experimental setup for obtaining …


Scaling Film Cooling Adiabatic Effectiveness With Mass Transfer And Thermal Experimental Techniques, Luke J. Mcnamara Mar 2019

Scaling Film Cooling Adiabatic Effectiveness With Mass Transfer And Thermal Experimental Techniques, Luke J. Mcnamara

Theses and Dissertations

With increasing engine temperatures, it is becoming more important to design effective film cooling schemes. Low temperature, large scale tests are often implemented in the design process to reduce cost and complexity. A nondimensional adiabatic effectiveness can be used as an indication of the performance of a film cooling scheme. However, the coolant flow rate must be properly scaled between the low temperature tests and engine temperatures to accurately predict film cooling effectiveness. This process is complicated by gas property variation with temperature. Tests are commonly conducted using thermal measurement techniques with infrared thermography (IR), but the use of pressure …


Tracking Shock Movement On The Surface Of An Oscillating, Straked Semispan Delta Wing, Justin A. Pung Mar 2019

Tracking Shock Movement On The Surface Of An Oscillating, Straked Semispan Delta Wing, Justin A. Pung

Theses and Dissertations

A recent research effort, sponsored by the Air Force Office of Scientific Research, numerically investigated the unsteady aerodynamic flow field around an oscillating, straked, delta wing. The study was centered on determining the importance of the unsteady aerodynamic forces acting as a driver for a nonlinear motion known as limit cycle oscillations. The current effort focused on creating a computational model to compare to the results of previous tests and modeling efforts and discover new information regarding the onset of LCO. The computational model was constructed using the Cartesian overset capabilities of the CREATE-AV™ fixed wing fluid dynamics solver Kestrel. …


Analytical Models And Control Design Approaches For A 6 Dof Motion Test Apparatus, Kyra L. Schmidt Mar 2019

Analytical Models And Control Design Approaches For A 6 Dof Motion Test Apparatus, Kyra L. Schmidt

Theses and Dissertations

Wind tunnels play an indispensable role in the process of aircraft design, providing a test bed to produce valuable, accurate data that can be extrapolated to actual flight conditions. Historically, time-averaged data has made up the bulk of wind tunnel research, but modern flight design necessitates the use of dynamic wind tunnel testing to provide time-accurate data for high frequency motion. This research explores the use of a 6 degree of freedom (DOF) motion test apparatus (MTA) in the form of a robotic arm to allow models inside a subsonic wind tunnel to track prescribed trajectories to obtain time-accurate force …


Shaping The Far-Zone Intensity, Degree Of Polarization, Angle Of Polarization, And Ellipticity Angle Using Vector Schell-Model Sources, Milo W. Hyde Iv Mar 2019

Shaping The Far-Zone Intensity, Degree Of Polarization, Angle Of Polarization, And Ellipticity Angle Using Vector Schell-Model Sources, Milo W. Hyde Iv

Faculty Publications

This paper presents a method to control both the shape and polarization of a beam in the far field using a vector Schell-model source. Given a desired far-zone beam shape and polarization, and applying Fourier and statistical optics theory, we derive the requisite second-order moments of said source, discuss what aspects of the far-zone beam can be controlled, and develop a step-by-step procedure for synthesizing the required random vector field instances. We validate this approach with Monte-Carlo wave-optics simulations. The results are found to be in very good agreement with the desired far-zone beam characteristics. The beam-shaping technique developed in …


Infrared And Electro-Optical Stereo Vision For Automated Aerial Refueling, William E. Dallmann Mar 2019

Infrared And Electro-Optical Stereo Vision For Automated Aerial Refueling, William E. Dallmann

Theses and Dissertations

Currently, Unmanned Aerial Vehicles are unsafe to refuel in-flight due to the communication latency between the UAVs ground operator and the UAV. Providing UAVs with an in-flight refueling capability would improve their functionality by extending their flight duration and increasing their flight payload. Our solution to this problem is Automated Aerial Refueling (AAR) using stereo vision from stereo electro-optical and infrared cameras on a refueling tanker. To simulate a refueling scenario, we use ground vehicles to simulate a pseudo tanker and pseudo receiver UAV. Imagery of the receiver is collected by the cameras on the tanker and processed by a …


Near Earth Space Object Detection Using Parallax As Multi-Hypothesis Test Criterion, Joseph C. Tompkins, Stephen C. Cain, David J. Becker Feb 2019

Near Earth Space Object Detection Using Parallax As Multi-Hypothesis Test Criterion, Joseph C. Tompkins, Stephen C. Cain, David J. Becker

Faculty Publications

The US Strategic Command (USSTRATCOM) operated Space Surveillance Network (SSN) is tasked with Space Situational Awareness (SSA) for the U.S. military. This system is made up of Electro-Optic sensors, such as the Ground-based Electro-Optical Deep Space Surveillance (GEODSS) and RADAR based sensors, such as the Space Fence Gaps. They remain in the tracking of Resident Space Objects (RSO’s) in Geosynchronous Orbits (GEO), due to limitations of SST and GEODSS system implementation. This research explores a reliable, ground-based technique used to quickly determine an RSO’s altitude from a single or limited set of observations. Implementation of such sensors into the SSN …


Experimental Study: Underwater Propagation Of Super-Gaussian And Multi-Gaussian Schell-Model Partially Coherent Beams With Varying Degrees Of Spatial Coherence, Svetlana Avramov-Zamurovic, Charles L. Nelson, Milo W. Hyde Iv Feb 2019

Experimental Study: Underwater Propagation Of Super-Gaussian And Multi-Gaussian Schell-Model Partially Coherent Beams With Varying Degrees Of Spatial Coherence, Svetlana Avramov-Zamurovic, Charles L. Nelson, Milo W. Hyde Iv

Faculty Publications

We report on experiments where super-Gaussian and flat-top, multi-Gaussian Schell-model spatially partially coherent beams, with varying degrees of spatial coherence, were propagated underwater. Two scenarios were explored—calm and mechanically agitated water. The main objective of our study was the experimental comparison of the scintillation statistics. For a similar degree of coherence widths, the results show a potentially improved performance of scintillation index for the multi-Gaussian Schell-model beams as compared to the super-Gaussian beams. It should be noted that the presented results pertain only to the given experimental scenarios and further investigation is necessary to determine the scope of the findings.


Laser-Induced Plasma Analysis For Surrogate Nuclear Debris, Michael B. Shattan, John Auxier, A. C. Stowe, Christian G. Parigger Jan 2019

Laser-Induced Plasma Analysis For Surrogate Nuclear Debris, Michael B. Shattan, John Auxier, A. C. Stowe, Christian G. Parigger

Faculty Publications

This work identifies analytical lines in laser-induced plasma for chemical analyses of major elements found in surrogate nuclear debris. These lines are evaluated for interferences and signal strength to insure they would be useful to measure relative concentrations. Compact, portable instruments are employed and can be included as part of a mobile nuclear forensics laboratory for field screening of nuclear debris and contamination. The average plasma temperature is measured using the well-established Boltzmann plot technique, and plasma's average electron density is determined using empirical formulae based on Stark broadening of the H-alpha line. These measurements suggest existence of partial local …