Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Other Physics

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 1491

Full-Text Articles in Physics

Proof-Of-Concept For Converging Beam Small Animal Irradiator, Benjamin Insley May 2024

Proof-Of-Concept For Converging Beam Small Animal Irradiator, Benjamin Insley

Dissertations & Theses (Open Access)

The Monte Carlo particle simulator TOPAS, the multiphysics solver COMSOL., and

several analytical radiation transport methods were employed to perform an in-depth proof-ofconcept

for a high dose rate, high precision converging beam small animal irradiation platform.

In the first aim of this work, a novel carbon nanotube-based compact X-ray tube optimized for

high output and high directionality was designed and characterized. In the second aim, an

optimization algorithm was developed to customize a collimator geometry for this unique Xray

source to simultaneously maximize the irradiator’s intensity and precision. Then, a full

converging beam irradiator apparatus was fit with a multitude …


Post-Modeling Adjustments And Delivered Dose Verification Of The 6fff Beam Model Commissioned For The Monaco Treatment Planning System, Grant C. Debevec Apr 2024

Post-Modeling Adjustments And Delivered Dose Verification Of The 6fff Beam Model Commissioned For The Monaco Treatment Planning System, Grant C. Debevec

LSU Master's Theses

External beam radiation therapy has been shown to be an effective treatment method for tumors and abnormalities of the spine and vertebral region. Treating the spine using a stereotactic body radiation therapy (SBRT) technique can reduce toxicity to the spinal cord. The 6 MV flattening filter free (6FFF) beam model is currently used to plan and calculate dose for SBRT treatment plans, and the treatment plans are delivered using a linear accelerator (LINAC).

The commissioned beam model represents an invariant component of a LINAC. For volumetric modulated arc therapy (VMAT) treatment plans, the multileaf collimator (MLC) positions are changing throughout …


X-Currents And Extreme Brightening Events, Abrielle Tio An Mei Wang, Gerard J. Fasel, Audrey Daucher, Makena Swenski, Andrea Black, John Mann, Maame Osei-Tutu Mar 2024

X-Currents And Extreme Brightening Events, Abrielle Tio An Mei Wang, Gerard J. Fasel, Audrey Daucher, Makena Swenski, Andrea Black, John Mann, Maame Osei-Tutu

Seaver College Research And Scholarly Achievement Symposium

The solar-terrestrial interaction is a dynamic process which manifests itself in the ionosphere. Interplanetary (IP) shocks or solar wind dynamic pressure pulses can generate enhanced brightening in dayside aurora. Foreshock transients are capable of inducing pressure changes, larger in magnitude than solar wind pressure pulses, which also contribute to intensifying dayside aurora. These pressure variations can accelerate particles into the ionosphere, generating field- aligned currents that produce magnetic impulse events and enhanced dayside auroral activity with periods of increased brightening. This study presents several dayside auroral brightening events which are not associated with IP shocks or solar wind dynamic pressure …


Spectroscopic End Point Detection With An Electron Beam Evaporator, Ryan Mcgraw Mar 2024

Spectroscopic End Point Detection With An Electron Beam Evaporator, Ryan Mcgraw

University Honors Theses

Spectroscopic end point detection is a common tool used for measuring slope changes in wavelength intensity. Using algorithms able to apply this concept, coatings will be able to be dynamically measured in real time and stopped at the appropriate level to ensure process uniformity. It is currently applied to reductive processes such as etching, where the surface will start to be eaten away, creating a plasma. When the entire amount of a material on a substrate has been eaten away, the plasma will change color as it is beginning to etch a different material. Using a spectrometer, this point where …


Spacetime Geometry Of Acoustics And Electromagnetism, Lucas Burns, Tatsuya Daniel, Stephon Alexander, Justin Dressel Feb 2024

Spacetime Geometry Of Acoustics And Electromagnetism, Lucas Burns, Tatsuya Daniel, Stephon Alexander, Justin Dressel

Mathematics, Physics, and Computer Science Faculty Articles and Research

Both acoustics and electromagnetism represent measurable fields in terms of dynamical potential fields. Electromagnetic force-fields form a spacetime bivector that is represented by a dynamical energy–momentum 4-vector potential field. Acoustic pressure and velocity fields form an energy–momentum density 4-vector field that is represented by a dynamical action scalar potential field. Surprisingly, standard field theory analyses of spin angular momentum based on these traditional potential representations contradict recent experiments, which motivates a careful reassessment of both theories. We analyze extensions of both theories that use the full geometric structure of spacetime to respect essential symmetries enforced by vacuum wave propagation. The …


Superconductivity Of Amorphous And Crystalline Re–Lu Films, Serafim Teknowijoyo, Armen Gulian Jan 2024

Superconductivity Of Amorphous And Crystalline Re–Lu Films, Serafim Teknowijoyo, Armen Gulian

Mathematics, Physics, and Computer Science Faculty Articles and Research

We report on superconducting properties of a novel material: rhenium-lutetium films. Different compositions of RexLu binary are explored from x ≈ 3.8 to close to pure Re stoichiometry. The highest critical temperature, up to 7 K, is obtained for x ≈ 10.5 in accordance with electron dispersive spectroscopy results. Depending on the deposition conditions, polycrystalline or amorphous films are obtainable, both of which are interesting for practical use. Crystalline structure of polycrystalline phase is identified as a non-centrosymmetric superconductor using grazing incidence x-ray diffractometry. Superconducting properties were characterized both resistively and magnetically. Magnetoresistivity and AC/DC susceptibility measurements allowed …


Physics 100 Level Laboratory Data Collection Tables, Kalani Hettiarachchilage Jan 2024

Physics 100 Level Laboratory Data Collection Tables, Kalani Hettiarachchilage

Open Educational Resources

The physics 100-level laboratory part demonstrates and applies the material learned from related classes. This document shows guidelines for collecting data and analyzing them by using Microsoft Excel. Laboratory components of PHY 114/ PHY 206/SLS 261 (Introduction to Physics and Nature of Physical Processes), PHY116/PHY 121 (Physics I and General Physics I), and PHY 156/PHY 161 (Physics II and General Physics II) at College of Staten Island are in-person mandatory sessions for students and it is required to pass to receive a passing grade for that class. This part is taught by different instructors. Although everyone is supposed to follow …


Synchronicity: An Analysis Of Einstein's Halfway Rule, Preslava Nikolova Jan 2024

Synchronicity: An Analysis Of Einstein's Halfway Rule, Preslava Nikolova

Rushton Journal of Undergraduate Humanities Research

For the modern world to function, Global Positioning System satellites must synchronize to clocks on Earth. This paper examines a concept that underlies GPS systems, namely Albert Einstein’s halfway rule—the idea that a line of simultaneity exists between two events in different systems. This essay discusses how Einstein used conventionalist methods to establish ½ as a constant value for σ to take advantage of the property of symmetry.


Applications Of Independent And Identically Distributed (Iid) Random Processes In Polarimetry And Climatology, Dan Kestner Jan 2024

Applications Of Independent And Identically Distributed (Iid) Random Processes In Polarimetry And Climatology, Dan Kestner

Dissertations, Master's Theses and Master's Reports

The unifying theme of this thesis is the characterization of “perfect randomness,” i.e., independent and identically distributed (IID) stochastic processes as these are applied in physical science. Two specific and mathematically distinct applications are chosen: (i) Radar and optical polarimetry; (ii) Analysis of time series in meteorology. In (i), IID process of a special kind, namely, with a distribution defined by symmetry, is used to link its multivariate Gaussian density to uniformity on the Poincaré sphere. This “statistical ellipsometry” approach is then used to relate polarimetric mismatches or imbalances to ellipsometric variables and suitably chosen cross-correlation measures. In (ii), recently …


Physics Ii, Kalani Hettiarachchilage Dec 2023

Physics Ii, Kalani Hettiarachchilage

Open Educational Resources

Physics II, class code PHY 156 at College of Staten Island is the second part of two two-semester algebra-based introductory physics courses. This course overlaps of the following topics laws of electricity, magnetism, optics, and modern physics. The important laws of physics in these areas and problem-solving are emphasized. Problem solving is an integral part of the course, all contents are designed to think critically, analytically, and logically. Conceptual understanding is reinforced using interactive computer-based techniques, demonstrations, problem-solving strategies, and laboratory experiences. In this document, all the class materials including lectures, worksheets, homework, group work assignments, quizzes, and conceptual Slido …


Creative Physics Syllabus For Online Class, Kalani Hettiarachchilage Dec 2023

Creative Physics Syllabus For Online Class, Kalani Hettiarachchilage

Open Educational Resources

Creative Physics syllabus for all information and guidelines will be a big help for students to know about the class structure, expectations, submission, personalized class materials, class ethics, and requirements in one place. This detailed syllabus will be a very effective way of expressing the information to the class. Creating a detailed syllabus and engaging activity of in the learning management system such as syllabus review activity will help students to navigate through important items on the syllabus.


Physics I, Kalani Hettiarachchilage Dec 2023

Physics I, Kalani Hettiarachchilage

Open Educational Resources

Physics I, class code PHY 116 at College of Staten Island is the first part of a two-semester algebra-based introductory physics course. This course overlaps many topics in the laws of classical mechanics, fluid dynamics, thermodynamics, wave motion, and sound. The important laws of physics in these areas and problem-solving are emphasized. Problem solving is an integral part of the course, all contents are designed to think critically, analytically, and logically. Conceptual understanding is reinforced using interactive computer-based techniques, demonstrations, problem-solving strategies, and laboratory experiences. In this document, all the class materials including lectures, worksheets, homework and group work assignments, …


Studying The Impact Of The Geospace Environment On Solar Lithosphere Coupling And Earthquake Activity, Dimitar Ouzounov, Galina Khachikyan Dec 2023

Studying The Impact Of The Geospace Environment On Solar Lithosphere Coupling And Earthquake Activity, Dimitar Ouzounov, Galina Khachikyan

Mathematics, Physics, and Computer Science Faculty Articles and Research

In solar–terrestrial physics, there is an open question: does a geomagnetic storm affect earthquakes? We expand research in this direction, analyzing the seismic situation after geomagnetic storms (GMs) accompanied by the precipitation of relativistic electrons from the outer radiation belt to form an additional radiation belt (RB) around lower geomagnetic lines. We consider four widely discussed cases in the literature for long-lived (weeks, months) RBs due to GMs and revealed that the 1/GMs 24 March 1991 with a new RB at L~2.6 was followed by an M7.0 earthquake in Alaska, 30 May 1991, near footprint L = 2.69; the 2/GMs …


Introduction To Physics, Kalani Hetti Dec 2023

Introduction To Physics, Kalani Hetti

Open Educational Resources

Introduction to physics, class code PHY 114 at college of Staten Island covers general physics concepts by using very simple algebraic calculations. Topics may include scientific measurements, significant figures, estimation, units, linear and rotational motion, vectors, forces, energy, momentum, collision, impulse, projectile motion, circular motion, thermodynamics, oscillating waves, electricity and magnetism, properties of lights, reflection, refraction, atomic nuclei, and radioactivity. This course is designed to teach general concepts and laws of physics to everyday life enforcing student’s critical thinking, logical patterns, organization, and everyday life applications. In this document, all the class materials including lectures, worksheets, homework assignments, quizzes, and …


Measuring The Lengths Of Sperm Whales Of The Northern Gulf Of Mexico By Wavelet Analysis Of Their Usual Clicks, George Drouant Dec 2023

Measuring The Lengths Of Sperm Whales Of The Northern Gulf Of Mexico By Wavelet Analysis Of Their Usual Clicks, George Drouant

University of New Orleans Theses and Dissertations

Abstract

Acoustic recordings of underwater sounds produced by marine mammals present an attractive alternative to costly and logistically complex ship based visual surveys for collecting population data for various species.

The first reported use of underwater acoustic recordings in the long-term monitoring of sperm whale populations was by Ackleh et al. (Ackleh et al., 2012). The paper describes counting sperm whale clicks at different locations to track population changes over time.

Analysis of sperm whale clicks offers additional insight into sperm whale populations. The echo location clicks (usual clicks) of sperm whales can be used to give an estimate of …


Acoustically Levitated Whispering-Gallery Mode Microlasers, H. M. Reynoso-De La Cruz, E. D. Hernández-Campos, E. Ortiz-Ricardo, A. Martínez-Borquez, I. Rosas-Román, V. Contreras, G. Ramos-Ortiz, B. Mendoza-Santoyo, Cecilia Zurita-Lopez, R. Castro-Beltrán Nov 2023

Acoustically Levitated Whispering-Gallery Mode Microlasers, H. M. Reynoso-De La Cruz, E. D. Hernández-Campos, E. Ortiz-Ricardo, A. Martínez-Borquez, I. Rosas-Román, V. Contreras, G. Ramos-Ortiz, B. Mendoza-Santoyo, Cecilia Zurita-Lopez, R. Castro-Beltrán

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Acoustic levitation has become a crucial technique for contactless manipulation in several fields, particularly in biological applications. However, its application in the photonics field remains largely unexplored. In this study, we implement an affordable and innovative phased-array levitator that enables stable trapping in the air of micrometer dye-doped droplets, thereby enabling the creation of microlasers. For the first time, this paper presents a detailed performance of the levitated microlaser cavity, supported by theoretical analysis concerning the hybrid technology based on the combination of whispering-gallery modes and acoustic fields. The pressure field distribution inside the acoustic cavity is numerically solved and …


Perovskite Cspbbr3 Solar Cells With Novel Hole-Transporting Layer Of Metal Complexes, Liqiu Zheng, Evynn S. Jackson, Ny'kesha S. Warren, Robert Owor, Zhongrui Li Nov 2023

Perovskite Cspbbr3 Solar Cells With Novel Hole-Transporting Layer Of Metal Complexes, Liqiu Zheng, Evynn S. Jackson, Ny'kesha S. Warren, Robert Owor, Zhongrui Li

Georgia Journal of Science

For the first time, the novel application of Schiff-base copper complexes in all-inorganic perovskite CsBrBr3 solar cells has been explored and turns out they could be utilized as effective hole-transporting materials. Schiff-base copper complexes with halogen ligands (R=Cl and Br) are synthesized with an ease approach at a low cost, both of which exhibit decent power conversion efficiency of 4.55% and 5.71%, respectively, when being constructed into solar devices as hole transport layers. Thanks to high thermal/chemical stability of those Schiff-base metal complexes, the strengthened stability was achieved which is comparable to that of carbon-based CsBrBr3 solar cells. …


Digital Twins Of The Living Knee: From Measurements To Model, Thor Erik Andreassen Nov 2023

Digital Twins Of The Living Knee: From Measurements To Model, Thor Erik Andreassen

Electronic Theses and Dissertations

Modern medicine has dramatically improved the lives of many. In orthopaedics, robotic surgery has given clinicians superior accuracy when performing interventions over conventional methods. Nevertheless, while these and many other methods are available to ensure treatments are performed successfully, far fewer methods exist to predict the proper treatment option for a given person. Clinicians are forced to categorize individuals, choosing the best treatment on “average.” However, many individuals differ significantly from the “average” person, for which many of these treatments are designed. Going forward, a method of testing, evaluating, and predicting different treatment options' short- and long-term effects on an …


Faster, Cheaper, And Better Cfd: A Case For Machine Learning To Augment Reynolds-Averaged Navier-Stokes, John Peter Romano Ii Oct 2023

Faster, Cheaper, And Better Cfd: A Case For Machine Learning To Augment Reynolds-Averaged Navier-Stokes, John Peter Romano Ii

Mechanical & Aerospace Engineering Theses & Dissertations

In recent years, the field of machine learning (ML) has made significant advances, particularly through applying deep learning (DL) algorithms and artificial intelligence (AI). The literature shows several ways that ML may enhance the power of computational fluid dynamics (CFD) to improve its solution accuracy, reduce the needed computational resources and reduce overall simulation cost. ML techniques have also expanded the understanding of underlying flow physics and improved data capture from experimental fluid dynamics.

This dissertation presents an in-depth literature review and discusses ways the field of fluid dynamics has leveraged ML modeling to date. The author selects and describes …


Superoscillations And Fock Spaces, Daniel Alpay, Fabrizio Colombo, Kamal Diki, Irene Sabadini, Daniele C. Struppa Sep 2023

Superoscillations And Fock Spaces, Daniel Alpay, Fabrizio Colombo, Kamal Diki, Irene Sabadini, Daniele C. Struppa

Mathematics, Physics, and Computer Science Faculty Articles and Research

In this paper we use techniques in Fock spaces theory and compute how the Segal-Bargmann transform acts on special wave functions obtained by multiplying superoscillating sequences with normalized Hermite functions. It turns out that these special wave functions can be constructed also by computing the approximating sequence of the normalized Hermite functions. First, we start by treating the case when a superoscillating sequence is multiplied by the Gaussian function. Then, we extend these calculations to the case of normalized Hermite functions leading to interesting relations with Weyl operators. In particular, we show that the Segal-Bargmann transform maps superoscillating sequences onto …


Trumpet Directivity From A Rotating Semicircular Array, Samuel D. Bellows, Joseph E. Avila, Timothy W. Leishman Sep 2023

Trumpet Directivity From A Rotating Semicircular Array, Samuel D. Bellows, Joseph E. Avila, Timothy W. Leishman

Directivity

The directivity function of a played musical instrument describes the angular dependence of its acoustic radiation and diffraction about the instrument, musician, and musician’s chair. Directivity influences sound in rehearsal, performance, and recording environments and signals in audio systems. Because high-resolution, spherically comprehensive measurements of played musical instruments have been unavailable in the past, the authors have undertaken research to produce and share such data for studies of musical instruments, simulations of acoustical environments, optimizations of microphone placements, and other applications. The authors acquired the data from repeated chromatic scales produced by a trumpet played at mezzo-forte in an anechoic …


Ferroelectric Hafnia Surface In Action, Xia Hong Sep 2023

Ferroelectric Hafnia Surface In Action, Xia Hong

Nebraska Center for Materials and Nanoscience: Faculty Publications

Piezoresponse microscopy and spectroscopy reveal the inextricable role of surface electrochemistry in stabilizing and controlling ferroelectricity in doped hafnia.

Doped hafnia (HfO2), a relatively new member of the ferroelectric family, has challenged in many ways our conventional perception of ferroelectric oxides. It possesses extremely localized electric dipoles that are independently switchable,1 making it immune to finite size effects — the loss of long-range dipole order in ferroic materials due to size scaling. While polycrystalline grains and microstructures can yield lower polarization and poorer cycling behavior in canonical ferroelectrics such as Pb(Zr,Ti)O3 and BaTiO3, in …


Molecular Mechanisms Of Amyloid-Like Fibril Formation, Sharareh Jalali Aug 2023

Molecular Mechanisms Of Amyloid-Like Fibril Formation, Sharareh Jalali

Dissertations

Proteins play a critical role in living systems by performing most of the functions inside cells. The latter is determined by the protein's three-dimensional structure when it is folded in its native state. However, under pathological conditions, proteins can misfold and aggregate, accounting for the formation of highly ordered insoluble assemblies known as amyloid fibrils. These assemblies are associated with diseases like Parkinson's and Alzheimer's. Strong evidence suggests that three mechanisms are critical for forming amyloid fibrils. These mechanisms are the nucleation of amyloid fibrils in solution (primary nucleation) as well as on the surface of existing fibrils (secondary nucleation) …


Exploring Topological Phonons In Different Length Scales: Microtubules And Acoustic Metamaterials, Ssu-Ying Chen Aug 2023

Exploring Topological Phonons In Different Length Scales: Microtubules And Acoustic Metamaterials, Ssu-Ying Chen

Dissertations

The topological concepts of electronic states have been extended to phononic systems, leading to the prediction of topological phonons in a variety of materials. These phonons play a crucial role in determining material properties such as thermal conductivity, thermoelectricity, superconductivity, and specific heat. The objective of this dissertation is to investigate the role of topological phonons at different length scales.

Firstly, the acoustic resonator properties of tubulin proteins, which form microtubules, will be explored The microtubule has been proposed as an analog of a topological phononic insulator due to its unique properties. One key characteristic of topological materials is the …


Feasibility Of Functional Mri On Point-Of-Care Mr Platforms, Arjama Halder Aug 2023

Feasibility Of Functional Mri On Point-Of-Care Mr Platforms, Arjama Halder

Electronic Thesis and Dissertation Repository

Magnetic resonance imaging (MRI) has proven to be a clinically valuable tool that can produce anatomical and functional images with improved soft tissue contrast compared to other imaging modalities. There has recently been a surge in low- and mid-field scanners due to hardware developments and innovative acquisition techniques. These compact scanners are accessible, offer reduced siting requirements and can be made operational at a reduced cost.

This thesis aims to implement blood-oxygen-level-dependent (BOLD) resting-state functional MRI (fMRI) at such a mid-field point-of-care scanner. The availability of this technique can be beneficial to get neurological information in cases of traumatic brain …


Investigation Of Student Understanding Of Representations Of Probability Concepts In Quantum Mechanics, William D. Riihiluoma Aug 2023

Investigation Of Student Understanding Of Representations Of Probability Concepts In Quantum Mechanics, William D. Riihiluoma

Electronic Theses and Dissertations

The ability to relate physical concepts and phenomena to multiple mathematical representations—and to move fluidly between these representations—is a critical outcome expected of physics instruction. In upper-division quantum mechanics, students must work with multiple symbolic notations, including some that they have not previously encountered. Thus, developing the ability to generate and translate expressions in these notations is of great importance, and the extent to which students can relate these expressions to physical quantities and phenomena is crucial to understand.

To investigate student understanding of the expressions used in these notations and the ways they relate, clinical think-aloud interviews were conducted …


Towards Clinical Microscopic Fractional Anisotropy Imaging, Nico Jj Arezza Aug 2023

Towards Clinical Microscopic Fractional Anisotropy Imaging, Nico Jj Arezza

Electronic Thesis and Dissertation Repository

Microscopic fractional anisotropy (µFA) is a diffusion-weighted magnetic resonance imaging (dMRI) metric that is sensitive to neuron microstructural features without being confounded by the orientation dispersion of axons and dendrites. µFA may potentially act as a surrogate biomarker for neurodegeneration, demyelination, and other pathological changes to neuron microstructure with greater specificity than other dMRI techniques that are sensitive to orientation dispersion, such as diffusion tensor imaging. As with many advanced imaging techniques, µFA is primarily used in research studies and has not seen use in clinical settings.

The primary goal of this Thesis was to assess the clinical viability of …


Optimization Of A Ball's Launch In Sports, Andrew C. Smith, Javier E. Hasbun Aug 2023

Optimization Of A Ball's Launch In Sports, Andrew C. Smith, Javier E. Hasbun

Georgia Journal of Science

Newton's laws are used to study the effects of air resistance on an object's motion. In ball-related sports such as baseball, soccer, etc., understanding the effects of air resistance is essential to optimize ball launch performance. This performance optimization can be studied by identifying the minimal time it takes for a ball with speed to travel a certain distance. We work with two models that apply to an object's motion. One of the models assumes a linear air drag while a second model makes use of a quadratic air drag. We do investigate known differential equations for when the Magnus …


Synthesis, Characterization, And Simulation Of Two-Dimensional Materials, Lawrence Hudy Aug 2023

Synthesis, Characterization, And Simulation Of Two-Dimensional Materials, Lawrence Hudy

Theses and Dissertations

ABSTRACT

SYNTHESIS, CHARACTERIZATION, AND SIMULATION OF TWO-DIMENSIONAL MATERIALS

by

Lawrence Hudy

The University of Wisconsin-Milwaukee, 2023Under the Supervision of Professor Michael Weinert

This dissertation focuses on my journey through many aspects of surface science leading to the first principles investigation of transition metal dichalcogenides studying the impact of defects, twist, and decreasing interlayer separation to probe their effect on the electronic properties of these materials. My journey started out learning many aspects of material science such as methods for material synthesis and characterization but later ended on simulation of material properties using density functional theory. In the first experiments, we …


Entanglement In The Hawking Effect: From Astrophysical To Optical Black Holes, Dimitrios Kranas Jul 2023

Entanglement In The Hawking Effect: From Astrophysical To Optical Black Holes, Dimitrios Kranas

LSU Doctoral Dissertations

The Hawking effect is an exciting physical prediction lying at the intersection of the two most successful theories of the past century, namely, Einstein’s theory of relativity and quantum mechanics. In this dissertation, we put special emphasis on the quantum aspects of the Hawking process encoded in the entanglement shared by the emitted fluxes of created quanta. In particular, we employ sharp tools from quantum information theory to quantify the entanglement produced by the Hawking effect throughout the black hole evaporation process. Our framework allows us to extend previous calculations of entanglement to a larger set of cases, for instance, …