Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 15 of 15

Full-Text Articles in Physics

Fluid-Wall Interactions In Pseudopotential Lattice Boltzmann Models, Cheng Peng, Luis F. Ayala, Orlando M. Ayala Jan 2021

Fluid-Wall Interactions In Pseudopotential Lattice Boltzmann Models, Cheng Peng, Luis F. Ayala, Orlando M. Ayala

Engineering Technology Faculty Publications

Designing proper fluid-wall interaction forces to achieve proper wetting conditions is an important area of interest in pseudopotential lattice Boltzmann models. In this paper, we propose a modified fluid-wall interaction force that applies for pseudopotential models of both single-component fluids and partially miscible multicomponent fluids, such as hydrocarbon mixtures. A reliable correlation that predicts the resulting liquid contact angle on a flat solid surface is also proposed. This correlation works well over a wide variety of pseudopotential lattice Boltzmann models and thermodynamic conditions.


Preface To Special Topic: A Tribute To John Lumley, Kiran Bhaganagar, Thomas B. Gatski, William K. George Feb 2017

Preface To Special Topic: A Tribute To John Lumley, Kiran Bhaganagar, Thomas B. Gatski, William K. George

CCPO Publications

This Special Topic Section is dedicated to the life and memory of John Leask Lumley(1930-2015), professor and scientist extraordinaire.


Comment On "Roles Of Bulk Viscosity On Rayleigh-Taylor Instability: Non-Equilibrium Thermodynamics Due To Spatio-Temporal Pressure Fronts" Phys. Fluids 28, 094102 (2016), Robert L. Ash Feb 2017

Comment On "Roles Of Bulk Viscosity On Rayleigh-Taylor Instability: Non-Equilibrium Thermodynamics Due To Spatio-Temporal Pressure Fronts" Phys. Fluids 28, 094102 (2016), Robert L. Ash

Mechanical & Aerospace Engineering Faculty Publications

No abstract provided.


Secondary Flow Of Liquid-Liquid Two-Phase Fluids In A Pipe Bend, M. Ayala, P. Santos, G. Hamester, O. Ayala Jan 2016

Secondary Flow Of Liquid-Liquid Two-Phase Fluids In A Pipe Bend, M. Ayala, P. Santos, G. Hamester, O. Ayala

Engineering Technology Faculty Publications

A simulated study of oil and water in 90 degree bend was carried on COMSOL 5.1 to characterize flow pattern and analyze the secondary flow. The Euler-Euler k-e Reynolds Averaged Navier-Stokes model was used to represent the fluid motion. Changes in the Reynolds number, curvature ratio and direction of gravity were made to evaluate the effects in the intensity of the secondary flow. In the end, it was possible to see that the bend direction does not affect the formation of secondary flow for Reynolds above 100,000. It appears that the fluid behavior on the pipe bend is strongly related …


Effects Of Forcing Time Scale On The Simulated Turbulent Flows And Turbulent Collision Statistics Of Inertial Particles, B. Rosa, H. Parishani, O. Ayala, L.-P. Wang Jan 2015

Effects Of Forcing Time Scale On The Simulated Turbulent Flows And Turbulent Collision Statistics Of Inertial Particles, B. Rosa, H. Parishani, O. Ayala, L.-P. Wang

Engineering Technology Faculty Publications

In this paper, we study systematically the effects of forcing time scale in the large-scale stochastic forcing scheme of Eswaran and Pope ["An examination of forcing in direct numerical simulations of turbulence," Comput. Fluids 16, 257 (1988)] on the simulated flow structures and statistics of forced turbulence. Using direct numerical simulations, we find that the forcing time scale affects the flow dissipation rate and flow Reynolds number. Other flow statistics can be predicted using the altered flow dissipation rate and flow Reynolds number, except when the forcing time scale is made unrealistically large to yield a Taylor microscale flow Reynolds …


Effects Of Gravity On The Acceleration And Pair Statistics Of Inertial Particles In Homogeneous Isotropic Turbulence, H. Parishani, O. Ayala, B. Rosa, L.-P. Wang, W. W. Grabowski Jan 2015

Effects Of Gravity On The Acceleration And Pair Statistics Of Inertial Particles In Homogeneous Isotropic Turbulence, H. Parishani, O. Ayala, B. Rosa, L.-P. Wang, W. W. Grabowski

Engineering Technology Faculty Publications

Within the context of heavy particles suspended in a turbulent airflow, we study the effects of gravity on acceleration statistics and radial relative velocity (RRV) of inertial particles. The turbulent flow is simulated by direct numerical simulation (DNS) on a 2563 grid and the dynamics of O(106) inertial particles by the point-particle approach. For particles/droplets with radius from 10 to 60 µm, we found that the gravity plays an important role in particle acceleration statistics: (a) a peak value of particle acceleration variance appears in both the horizontal and vertical directions at a particle Stokes number …


Non-Equilibrium Pressure Control Of The Height Of A Large-Scale, Ground-Coupled, Rotating Fluid Column, R. L. Ash, I. R. Zardadhkan Jan 2013

Non-Equilibrium Pressure Control Of The Height Of A Large-Scale, Ground-Coupled, Rotating Fluid Column, R. L. Ash, I. R. Zardadhkan

Mechanical & Aerospace Engineering Faculty Publications

When a ground-coupled, rotating fluid column is modeled incorporating non-equilibrium pressure forces in the Navier-Stokes equations, a new exact solution results. The solution has been obtained in a similar manner to the classical equilibrium solution. Unlike the infinite-height, classical solution, the non-equilibrium pressure solution yields a ground-coupled rotating fluid column of finite height. A viscous, non-equilibrium Rankine vortex velocity distribution, developed previously, was used to demonstrate how the viscous and non-equilibrium pressure gradient forces, arising in the vicinity of the velocity gradient discontinuity that is present in the classical Rankine vortex model, effectively isolate the rotating central fluid column from …


The Influence Of Pressure Relaxation On The Structure Of An Axial Vortex, Robert L. Ash, Irfan Zardadkhan, Allan J. Zuckerwar Jan 2011

The Influence Of Pressure Relaxation On The Structure Of An Axial Vortex, Robert L. Ash, Irfan Zardadkhan, Allan J. Zuckerwar

Mechanical & Aerospace Engineering Faculty Publications

Governing equations including the effects of pressure relaxation have been utilized to study an incompressible, steady-state viscous axial vortex with specified far-field circulation. When sound generation is attributed to a velocity gradient tensor-pressure gradient product, the modified conservation of momentum equations that result yield an exact solution for a steady, incompressible axial vortex. The vortex velocity profile has been shown to closely approximate experimental vortex measurements in air and water over a wide range of circulation-based Reynolds numbers. The influence of temperature and humidity on the pressure relaxation coefficient in air has been examined using theoretical and empirical approaches, and …


Volume Viscosity In Fluids With Multiple Dissipative Processes, Allan J. Zuckerwar, Robert L. Ash Jan 2009

Volume Viscosity In Fluids With Multiple Dissipative Processes, Allan J. Zuckerwar, Robert L. Ash

Mechanical & Aerospace Engineering Faculty Publications

The variational principle of Hamilton is applied to derive the volume viscosity coefficients of a reacting fluid with multiple dissipative processes. The procedure, as in the case of a single dissipative process, yields two dissipative terms in the Navier-Stokes equation: The first is the traditional volume viscosity term, proportional to the dilatational component of the velocity; the second term is proportional to the material time derivative of the pressure gradient. Each dissipative process is assumed to be independent of the others. In a fluid comprising a single constituent with multiple relaxation processes, the relaxation times of the multiple processes are …


Hypersonic Boundary Layer Receptivity To Acoustic Disturbances Over Cones, Kursat Kara Jan 2008

Hypersonic Boundary Layer Receptivity To Acoustic Disturbances Over Cones, Kursat Kara

Mechanical & Aerospace Engineering Theses & Dissertations

The receptivity mechanisms of hypersonic boundary layers to free stream acoustic disturbances are studied using both linear stability theory (LST) and direct numerical simulations (DNS). A computational code is developed for numerical simulation of steady and unsteady hypersonic flow over cones by combining a fifth-order weighted essentially non-oscillatory (WENO) scheme with third-order total-variation-diminishing (TVD) Runge-Kutta method. Hypersonic boundary layer receptivity to free-stream acoustic disturbances in slow and fast modes over 5-degree, half-angle blunt cones and wedges are numerically investigated. The free-stream Mach number is 6.0, and the unit Reynolds number is 7.8×106/ft. Both the steady and unsteady solutions are obtained …


Variational Approach To The Volume Viscosity Of Fluids, Allan J. Zuckerwar, Robert L. Ash Jan 2006

Variational Approach To The Volume Viscosity Of Fluids, Allan J. Zuckerwar, Robert L. Ash

Mechanical & Aerospace Engineering Faculty Publications

The variational principle of Hamilton is applied to develop an analytical formulation to describe the volume viscosity in fluids. The procedure described here differs from those used in the past in that a dissipative process is represented by the chemical affinity and progress variable (sometimes called "order parameter") of a reacting species. These state variables appear in the variational integral in two places: first, in the expression for the internal energy, and second, in a subsidiary condition accounting for the conservation of the reacting species. As a result of the variational procedure, two dissipative terms appear in the Navier-Stokes equation. …


Response To "Comment On Variational Approach To The Volume Viscosity Of Fluids" [Phys. Fluids 18, 109101 (2006)], Allen J. Zuckerwar, Robert L. Ash Jan 2006

Response To "Comment On Variational Approach To The Volume Viscosity Of Fluids" [Phys. Fluids 18, 109101 (2006)], Allen J. Zuckerwar, Robert L. Ash

Mechanical & Aerospace Engineering Faculty Publications

We respond to the Comment of Markus Scholle and therewith revise our material entropy constraint to account for the production of entropy. (c) 2006 American Institute of Physics.


Efficient Dynamic Unstructured Methods And Applications For Transonic Flows And Hypersonic Stage Separation, Xiaobing Luo Jan 1999

Efficient Dynamic Unstructured Methods And Applications For Transonic Flows And Hypersonic Stage Separation, Xiaobing Luo

Mechanical & Aerospace Engineering Theses & Dissertations

Relative-moving boundary problems have a wide variety of applications. They appear in staging during a launch process, store separation from a military aircraft, rotor-stator interaction in turbomachinery, and dynamic aeroelasticity.

The dynamic unstructured technology (DUT) is potentially a strong approach to simulate unsteady flows around relative-moving bodies, by solving time-dependent governing equations. The dual-time stepping scheme is implemented to improve its efficiency while not compromising the accuracy of solutions. The validation of the implicit scheme is performed on a pitching NACA0012 airfoil and a rectangular wing with low reduced frequencies in transonic flows. All the matured accelerating techniques, including the …


An Apparatus For Measuring The Thermal Conductivity Of Cast Insulation Materials, Christine A. Wilkins, Robert L. Ash Jul 1980

An Apparatus For Measuring The Thermal Conductivity Of Cast Insulation Materials, Christine A. Wilkins, Robert L. Ash

Mechanical & Aerospace Engineering Faculty Publications

A steady-state apparatus has been developed for measuring the thermal conductivity of cast materials. The design has employed a novel thermal symmetry arrangement which can permit total electrical isolation of the test material from its surroundings. © 1980 American Institute of Physics


Effect Of Compliant Wall Motion On Turbulent Boundary Layers, Dennis M. Bushness, Jerry N. Hefner, Robert L. Ash Jan 1977

Effect Of Compliant Wall Motion On Turbulent Boundary Layers, Dennis M. Bushness, Jerry N. Hefner, Robert L. Ash

Mechanical & Aerospace Engineering Faculty Publications

A critical analysis of available compliant wall data which indicated drag reduction under turbulent boundary layers is presented. Detailed structural dynamic calculations suggest that the surfaces responded in a resonant, rather than a compliant, manner. Alternate explanations are given for drag reductions observed in two classes of experiments: (1) flexible pipe flows and (2) water-backed membranes in air. Analysis indicates that the wall motion for the remaining data is typified by short wavelengths in agreement with the requirements of a possible compliant wall drag reduction mechanism recently suggested by Langley. Copyright © 1977 American Institute of Physics.