Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 24 of 24

Full-Text Articles in Physics

Atomic Gradiometry Based On The Interference Of Microwave Optical Sidebands, Kaleb L. Campbell Jul 2022

Atomic Gradiometry Based On The Interference Of Microwave Optical Sidebands, Kaleb L. Campbell

Optical Science and Engineering ETDs

We describe a novel pulsed magnetic gradiometer based on the optical interference of sidebands generated using two spatially separated alkali vapor cells. The sidebands are produced with high efficiency using parametric frequency conversion of a probe beam interacting with Rubiduim 87 atoms in a coherent superposition of magnetically sensitive hyperfine ground states. First, experimental evidence of the sideband process is described for both steady-state and pulsed operation. Then, a theoretical framework is developed that accurately models sideband generation based on density matrix formalism. The gradiometer is then constructed using two spatially separated vapor cells, and a beat-note is generated. The …


Realization Of Bsu First Magneto-Optical Trap For The Spatial Confinement Of Rb Atoms Using Next Generation Fiber Optic Capabilities With Minimot, Brahmin Thurber-Carbone May 2021

Realization Of Bsu First Magneto-Optical Trap For The Spatial Confinement Of Rb Atoms Using Next Generation Fiber Optic Capabilities With Minimot, Brahmin Thurber-Carbone

Honors Program Theses and Projects

This paper will be a combination of my theoretical and experimental work toward Bridgewater State Universities first Magneto-Optical Trap (MOT) for laser cooling and trapping of neutral atoms in order to study fundamental quantum mechanical behavior of Rubidium (Rb) atoms. The goal of the theoretical aspect is to complete details of well-established works on how the complicated quantum, atomic, and electromagnetic (laser) interactions required to understand the design and operation of the MOT reduce to the physics and mathematics of a damped oscillator. This is made explicitly clear using familiar damped oscillator systems, such as a spring/mass/damping or pendulum/mass/damping (ie …


Optical-Depth Scaling Of Light Scattering From A Dense And Cold Atomic 87Rb Gas, K. J. Kemp, S. J. Roof, M. D. Havey, I. M. Sokolov, D. V. Kupriyanov, W. Guerin Jan 2020

Optical-Depth Scaling Of Light Scattering From A Dense And Cold Atomic 87Rb Gas, K. J. Kemp, S. J. Roof, M. D. Havey, I. M. Sokolov, D. V. Kupriyanov, W. Guerin

Physics Faculty Publications

We report investigation of near-resonance light scattering from a cold and dense atomic gas of 87Rb atoms. Measurements are made for probe frequencies tuned near the F=2→ F'=3 nearly closed hyperfine transition, with particular attention paid to the dependence of the scattered light intensity on detuning from resonance, the number of atoms in the sample, and atomic sample size. We find that, over a wide range of experimental variables, the optical depth of the atomic sample serves as an effective single scaling parameter which describes well all the experimental data.


Expansion Of An Ultracold Neutral Plasma, Yin Li Jan 2019

Expansion Of An Ultracold Neutral Plasma, Yin Li

Honors Theses

Ultracold neutral plasmas (UNP) exhibit interesting behavior and are more feasible to control than hot plasmas. Physicists would like to lower the temperature of a UNP to achieve a higher Coulomb coupling parameter, Γ for both electrons and ions. However, the three body recombination (TBR) between ions and electrons produces Rydberg atoms and heats up the plasma electrons, thereby ionizing them to Γe < 0.2. Adding Rydberg atoms to the plasma will reduce the temperature of a UNP in certain situations. In this honors project, we tried to achieve a Γe value greater than 0.5 by embedding Rydberg atoms multiple times in the plasma. We did extensive numerical simulations, but we were unable to replicate previous results from another group which obtained Γe = 0.5 in the first 1 µ s of plasma evolution. However, we were able to use the simulation results to test various different experiment scenarios. For experiments, we created a UNP of Rubidium atoms in the magneto-optical trap by laser cooling and photoionization. We figured out a nice way to zero the electric field within the field meshes by looking at the plasma expansion very late in its evolution through the micro-channel plate. We set the voltage and delay on the field mesh bias to find expansion velocity of the plasma for time t > 50 µs, and we used different methods to deduce the expansion velocity from the ion time of flight signals. However, we found that there was no relation of Γe at 1 µ s and the expansion velocity …


Measuring The Hyperfine Splittings Of Lowest Energy Atomic Transitions In Rubidium, Benjamin D. Graber Apr 2015

Measuring The Hyperfine Splittings Of Lowest Energy Atomic Transitions In Rubidium, Benjamin D. Graber

Undergraduate Honors Thesis Projects

The goal of this experiment was to measure the hyperfine energy splittings of the ground to first excited state transitions in rubidium using saturated absorption spectroscopy. Using this technique, we measured these transition energy spectra by taking the difference of two photodiode outputs due to multiple beams of a single laser scanned over a range of frequencies and shone through a cell of Rb vapor. When the laser frequency was resonant with an atomic transition, photons of those frequencies were absorbed, leaving a dip in intensity of the beam measured at the photodiode. One of the two laser beams had …


Construction And Optimization Of A Tapered Amplifier System For Applications In Ultra-Cold Plasma Research, Ryan Cole Jan 2015

Construction And Optimization Of A Tapered Amplifier System For Applications In Ultra-Cold Plasma Research, Ryan Cole

Honors Theses

The number density of cold atoms confined in a magneto-optical trap (MOT) is critically dependent on the intensity of the lasers used to cool the sample. To generate large optical powers while retaining the practicality of homemade external cavity diode lasers (ECDLs), a tapered amplifier (TA) system was designed and constructed to amplify the output of an existing 780 nm, continuous-wave ECDL. The amplifier’s performance is discussed in terms of its gain and power output. Under standard operating conditions, optical amplification of 12 dB is achieved, with a maximum power output of 0.75 W. The completed amplifier is installed into …


Optically-Pumped Spin-Exchange Polarized Electron Source, Munir Pirbhai Dec 2013

Optically-Pumped Spin-Exchange Polarized Electron Source, Munir Pirbhai

Department of Physics and Astronomy: Dissertations, Theses, and Student Research

Polarized electron beams are an indispensable probe of spin-dependent phenomena in fields of atomic and molecular physics, magnetism and biophysics. While their uses have become widespread, the standard source based on negative electron affinity gallium arsenide (GaAs) remains technically complicated. This has hindered progress on many experiments involving spin-polarized electrons, especially those using target gas loads, which tend to adversely affect the performance of GaAs sources. A robust system based on an alternative way to make polarized electron beams has been devised in this study, which builds on previous work done in our lab. It involves spin-exchange collisions between free, …


Nested Gaussian Laser Beams - A Blue-Detuned One-Dimensional Lattice Of Optical Dipole Traps For Quantum Computing, Travis Daniel Frazer Mar 2013

Nested Gaussian Laser Beams - A Blue-Detuned One-Dimensional Lattice Of Optical Dipole Traps For Quantum Computing, Travis Daniel Frazer

Physics

No abstract provided.


Achieving Laser Wavelength Stability For Use In Neutral Atom Quantum Computing, Jennifer H. Rushing Dec 2011

Achieving Laser Wavelength Stability For Use In Neutral Atom Quantum Computing, Jennifer H. Rushing

Physics

Quantum computing may still be decades away from realization but the pieces necessary for the construction of the first quantum chip are beginning to come together. One piece still eluding researchers is the ability to address individual atoms within a scalable quantum chip structure. The resolution to this issue may be found in any one of several promising implementations, including the use of neutral atoms trapped in 2D optical lattices. One method of constructing such lattices, which has been shown to be computationally viable, employs the diffraction pattern just behind a circular aperture. Laser wavelength stability plays a crucial role …


Spectroscopic Study Of Ultracold Rubidium Atoms In An Optical Dipole Force Trap, Eman Mohammed Ahmed Jul 2010

Spectroscopic Study Of Ultracold Rubidium Atoms In An Optical Dipole Force Trap, Eman Mohammed Ahmed

Physics Theses & Dissertations

The interaction of light with atoms and molecules is of fundamental interest in many branches of science. In atomic physics, this interaction can be used to cool and spatially confine (trap) atoms. These traps can be used as the starting point for other experiments, but the dynamics of the cooling and trapping processes is itself of interest. In order to better understand the physics of trapping atoms in an optical dipole force trap, we have conducted a series of spectroscopic measurements of ultracold rubidium atoms in such a trap. The trap was created at the focus of a Nd:YAG laser …


Hard Collisions In Rubidium Using Sub-Doppler Spectroscopy, Douglas E. Thornton Mar 2010

Hard Collisions In Rubidium Using Sub-Doppler Spectroscopy, Douglas E. Thornton

Theses and Dissertations

To better understand the laser kinetics of an alkali gain medium, hard collisions, or velocity-changing collisions, has been studied and a velocity-changing collisional rate has been calculated. Previous works have studied these collisions, but no rate has been calculated. Using the precise tool of sub-Doppler spectroscopy, atomic hard collisions can be observed. The collected spectra are fitted with two different line shapes to demonstrate the accuracy of this method. From the fits, the number of hard collisions can be extracted. The time scale of the hard collisions in rubidium is interpolated by varying the chopping frequency of the pump beam, …


Investigation Of Loading Of Pulsed And Continuous-Wave Optical Dipole Force Traps, M. Shiddiq, E. M. Ahmed, M. D. Havey, C. I. Sukenik Apr 2008

Investigation Of Loading Of Pulsed And Continuous-Wave Optical Dipole Force Traps, M. Shiddiq, E. M. Ahmed, M. D. Havey, C. I. Sukenik

Physics Faculty Publications

We have investigated the behavior of an optical dipole force trap realized using a mode-locked Nd:YAG laser and have compared performance to a continuous-wave (cw) trap built using the same laser but running in a cw mode. The traps are used to confine ultracold 85Rb atoms which are loaded from a magneto-optical trap (MOT). In most respects, the two traps behave similarly over a wide range of laser parameters provided that the average potential well depth is the same; however, there is a notable difference in the dipole trap loading efficiency dependence on the detuning of the MOT trap laser …


Photoassociative Spectroscopy Of Ultracold Metastable Argon And Study Of Dual Species Trap Loss In A Rubidium-Metastable Argon Mot, Michael K. Shaffer Apr 2008

Photoassociative Spectroscopy Of Ultracold Metastable Argon And Study Of Dual Species Trap Loss In A Rubidium-Metastable Argon Mot, Michael K. Shaffer

Physics Theses & Dissertations

This dissertation presents the findings of two experimental investigations in ultracold atomic and molecular physics: The study of the dual species trap loss in a rubidium - metastable argon magneto-optical trap and the photoassociative spectroscopy of ultracold metastable argon. The interspecies trap loss rate coefficients have been measured for ultracold collisions between 85Rb and 40Ar* in a dual-species magneto-optical trap (MOT) and the two rates have been found to be approximately equal over the range of intensities studied with values of β'Rb–Ar* = 3.0 ± 1.3 × 10-11 cm3/s and β'Ar*–Rb = 1.9 …


Investigation Of Ultracold Rubidium Atoms In A Pulsed Far Off Resonance Trap, Minarni Minarni Jul 2006

Investigation Of Ultracold Rubidium Atoms In A Pulsed Far Off Resonance Trap, Minarni Minarni

Physics Theses & Dissertations

This dissertation reports on the design, construction, and investigation of a pulsed optical dipole force trap which uses laser light to confine ultracold rubidium (Rb) atoms. Because the laser frequency is detuned far from the atomic resonance frequency, the optical dipole force trap is also called a "far-off-resonance trap" (FORT). The use of pulsed laser light to create an optical trap may find application in expanding the number of atomic species which can be confined. The experiments reported here are principally aimed, however, at understanding the physics of pulsed FORT dynamics in anticipation of using the free electron laser (FEL) …


Trap Loss In A Dual-Species Rb-Ar* Magneto-Optical Trap, H. C. Busch, M. K. Shaffer, E. M. Ahmed, C. I. Sukenik Feb 2006

Trap Loss In A Dual-Species Rb-Ar* Magneto-Optical Trap, H. C. Busch, M. K. Shaffer, E. M. Ahmed, C. I. Sukenik

Physics Faculty Publications

We have investigated trap loss in a dual-species magneto-optical trap (MOT) comprised of 85Rb and metastable 40Ar. We measure the trap loss rate coefficients for each species due to the presence of the other as a function of trap light intensity. We clearly identify both Penning ionization of Rb by Ar* and associative ionization to form the molecular ion RbAr+ as two of the trap loss channels. We have also measured the trap loss rate coefficient for the Ar* MOT alone and observe production of Ar+ and Ar2+ ions.


Alignment Dynamics Of Slow Light Diffusion In Ultracold Atomic 85Rb, S. Balik, R. G. Olave, C. I. Sukenik, M. D. Havey, V. M. Datsyuk, I. M. Sokolov, D. V. Kupriyanov Nov 2005

Alignment Dynamics Of Slow Light Diffusion In Ultracold Atomic 85Rb, S. Balik, R. G. Olave, C. I. Sukenik, M. D. Havey, V. M. Datsyuk, I. M. Sokolov, D. V. Kupriyanov

Physics Faculty Publications

A combined experimental and theoretical investigation of time- and alignment-dependent propagation of light in an ultracold atomic gas of atomic 85Rb is reported. Coherences among the scattering amplitudes for light scattering off excited hyperfine levels produce strong variations of the light polarization in the vicinity of atomic resonance. Measurements are in excellent agreement with Monte Carlo simulations of the multiple scattering process.


Experimental Investigation Of A Rubidium-Argon Dual Species Magneto-Optical Trap, Hauke Christian Busch Apr 2004

Experimental Investigation Of A Rubidium-Argon Dual Species Magneto-Optical Trap, Hauke Christian Busch

Physics Theses & Dissertations

The first simultaneous cooling and confinement of two different atomic species from opposite sides of the periodic table in a dual magneto optical trap (DMOT) has been accomplished. The alkali-metal 85Rb and the noble gas 40Ar* have been simultaneously confined, characterized, and interspecies interaction parameters have been measured. The DMOT confined 1.2 × 106 85Rb atoms at a density of 1 × 1010/cm3 and 1.4 × 106 40Ar* atoms with a density of 1.2 × 1010/cm3. A collisional loss rate coefficient for Rb-Ar* has been determined to …


Spectral Dependence Of Coherent Backscattering Of Light In A Narrow-Resonance Atomic System, D. V. Kupriyanov, I. M. Sokolov, N. V. Larionov, P. Kulatunga, C. I. Sukenik, S. Balik, M. D. Havey Mar 2004

Spectral Dependence Of Coherent Backscattering Of Light In A Narrow-Resonance Atomic System, D. V. Kupriyanov, I. M. Sokolov, N. V. Larionov, P. Kulatunga, C. I. Sukenik, S. Balik, M. D. Havey

Physics Faculty Publications

We report a combined theoretical and experimental study of the spectral and polarization dependence of near-resonant radiation coherently backscattered from an ultracold gas of 85Rb atoms. Measurements in a 6 MHz range about the 5s 2S1/25p 2P3/2, F=3F'=4 hyperfine transition are compared with simulations based on a realistic model of the experimental atomic density distribution. In the simulations, the influence of heating of the atoms in the vapor, magnetization of the vapor, finite spectral bandwidth, and other nonresonant hyperfine transitions are considered. Good agreement is found between the simulations and measurements.


Coherent Backscattering Of Light From An Ultra Cold Gas Of Rubidium-85 Atoms, Pasad B. Kulatunga Apr 2003

Coherent Backscattering Of Light From An Ultra Cold Gas Of Rubidium-85 Atoms, Pasad B. Kulatunga

Physics Theses & Dissertations

This thesis reports on the experimental study of coherent radiative transport in an ultracold gas of 85Rb atoms confined in a magneto-optic trap. Measurements are made of the polarization dependence of the spatial and spectral profile of light backscattered from the sample. The results shows an interferometric enhancement sensitive to coherent multiple scattering in the atomic gas, and strong variations with the polarization of the incident and detected light. Effects due to coherent enhancement of weak non-resonant transitions are also observed. Comparison of the measurements with realistic quantum Monte Carlo simulations of Kupriyanov, et al [1] yield very good …


Measurement Of Correlated Multiple Light Scattering In Utracold Atomic 85Rb, P. Kulatunga, C. I. Sukenik, S. Balik, M. D. Havey, D. V. Kupriyanov, I. M. Sokolov Jan 2003

Measurement Of Correlated Multiple Light Scattering In Utracold Atomic 85Rb, P. Kulatunga, C. I. Sukenik, S. Balik, M. D. Havey, D. V. Kupriyanov, I. M. Sokolov

Physics Faculty Publications

We report an experimental study of correlated multiple light scattering in an ultracold gas of 85Rb confined in a magneto-optic trap. Measurements are made of the polarization dependence of the spatial and spectral profile of light backscattered from the sample. The results show an interferometric enhancement sensitive to coherent multiple scattering in the atomic gas, and strong variations with the polarization of the incident and detected light. The spatial width and peak value of the enhancement are found to be dependent on the sample size. Comparison of all the measurements with realistic quantum Monte Carlo simulations yields a very …


Coherent Backscattering Of Light In Atomic Systems: Application To Weak Localization In An Ensemble Of Cold Alkali-Metal Atoms, D. V. Kupriyanov, I. M. Sokolov, P. Kulatunga, C. I. Sukenik, M. D. Havey Jan 2003

Coherent Backscattering Of Light In Atomic Systems: Application To Weak Localization In An Ensemble Of Cold Alkali-Metal Atoms, D. V. Kupriyanov, I. M. Sokolov, P. Kulatunga, C. I. Sukenik, M. D. Havey

Physics Faculty Publications

Development of a theoretical treatment of multiple coherent light scattering in an ultracold atomic gas is reported. Specific application is made to coherent backscattering of a weak-radiation field from realistically modeled samples of ultracold atomic 85Rb. Comprehensive Monte Carlo simulations of the spatial, spectral, and polarization dependence of the backscattering line shape are made and compared with available experimental results.


Simultaneous Trapping Of Rubidium And Metastable Argon In A Magneto-Optical Trap, C. I. Sukenik, H. C. Busch Nov 2002

Simultaneous Trapping Of Rubidium And Metastable Argon In A Magneto-Optical Trap, C. I. Sukenik, H. C. Busch

Physics Faculty Publications

We have simultaneously confined rubidium and metastable argon in a dual-species magneto-optical trap (MOT). Here a binary mixture of atomic species from different groups of the periodic table have been optically confined at ultracold temperatures. We describe the apparatus and characterize the individual, single species MOTs and the dual-species MOT. Both fluorescence and ion production are monitored. With both species trapped, we observe ~5106 85Rb atoms and ~2106 40Ar* atoms. Realization of the dual-species trap opens the way for detailed studies of Penning and associative ionization, photoassociative spectroscopy, and eventually for the production of bound, ultracold RbAr molecules.


Role Of Spontaneous Emission In Ultracold Two-Color Optical Collisions, C. I. Sukenik, T. Walker Jan 1999

Role Of Spontaneous Emission In Ultracold Two-Color Optical Collisions, C. I. Sukenik, T. Walker

Physics Faculty Publications

We have observed violet photon emission resulting from energy-pooling collisions between ultracold Rb atoms illuminated by two colors of near-resonant infrared laser light. We have used this emission as a probe of doubly excited state ultracold collision dynamics. By varying the detuning of the lasers, we have clearly identified the effect of spontaneous emission on the collision process.


Low Saturation Intensities In Two-Photon Ultracold Collisions, C. I. Sukenik, D. Hoffman, S. Bali, T. Walker Jul 1998

Low Saturation Intensities In Two-Photon Ultracold Collisions, C. I. Sukenik, D. Hoffman, S. Bali, T. Walker

Physics Faculty Publications

We have observed violet photon emission resulting from energy-pooling collisions between ultracold Rb atoms illuminated by two colors of near-resonant infrared laser light. We have used this emission as a probe of doubly excited state ultracold collision dynamics. We have observed the lowest saturation intensity for light-induced ultracold collisions seen to date which we identify as due to depletion of incoming ground state flux. We have also varied the detuning of the lasers which allows us to clearly identify the effect of spontaneous emission and optical shielding.