Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Atomic, Molecular and Optical Physics

2023

Institution
Keyword
Publication
Publication Type
File Type

Articles 1 - 30 of 64

Full-Text Articles in Physics

Lithium Tetraborate As A Neutron Scintillation Detector: A Review, Elena Echeverria, John W. Mcclory, Lauren Samson, Katherine Shene, Juan A. Colon Santana, Yaroslav V. Burak, Volodymyr T. Adamiv, Ihor M. Teslyuk, Lu Wang, Wai-Ning Mei, Kyle A. Nelson, Douglas S. Mcgregor, Peter A. Dowben, Carolina C. Ilie, James C. Petrosky, Archit Dhingra Dec 2023

Lithium Tetraborate As A Neutron Scintillation Detector: A Review, Elena Echeverria, John W. Mcclory, Lauren Samson, Katherine Shene, Juan A. Colon Santana, Yaroslav V. Burak, Volodymyr T. Adamiv, Ihor M. Teslyuk, Lu Wang, Wai-Ning Mei, Kyle A. Nelson, Douglas S. Mcgregor, Peter A. Dowben, Carolina C. Ilie, James C. Petrosky, Archit Dhingra

Faculty Publications

The electronic structure and translucent nature of lithium tetraborate (Li2B4O7) render it promising as a scintillator medium for neutron detection applications. The inherently large neutron capture cross-section due to 10B and 6Li isotopes and the ease with which Li2B4O7 can be enriched with these isotopes, combined with the facile inclusion of rare earth dopants (occupying the Li+ sites), are expected to improve the luminescent properties, as well as the neutron detection efficiency, of Li2B4O7. The electronic structure of both doped …


Electro-Optical Effect Of 4-N-Alkyl-Sulfanyl-4' Isothiocyanate-Biphenyl Liquid Crystal Homologous Series Under Terahertz Frequency: A Theoretical Approach, Yogesh Kumar, Narinder Kumar Dec 2023

Electro-Optical Effect Of 4-N-Alkyl-Sulfanyl-4' Isothiocyanate-Biphenyl Liquid Crystal Homologous Series Under Terahertz Frequency: A Theoretical Approach, Yogesh Kumar, Narinder Kumar

Makara Journal of Science

This work presented the electro-optical effect of the homologous series 4-n-alkyl-sulfanyl-4'-isothiocyanate-biphenyl (N1SC13H8-SH2n+1Cn) under an electric field with terahertz (THz) frequency. The increase in alkyl sulfanyl chain length reduces the birefringence but increases the order parameter in THz frequency. An inverse relationship exists between the birefringence and order parameter. Meanwhile, the increase in alkyl sulfanyl chain length increases the refractive index with an even–odd effect. Birefringence, refractive index, order parameter, and director angle show an even–odd effect in the THz frequency range. The calculation is performed between 1 and 1,200 THz frequency. The isothiocyanate stretching corresponding to …


Radiation Exposure Calibration Of The Al2o3:C With Radium-226 And Cesium-137 Using The Osl Method, Selma Tepeli Aydin Dec 2023

Radiation Exposure Calibration Of The Al2o3:C With Radium-226 And Cesium-137 Using The Osl Method, Selma Tepeli Aydin

All Theses

Optically stimulated luminescence (OSL) dosimetry was utilized to calibrate Al2O3:C powder dosimeters, available commercially as the nanoDot® from Landauer Inc., and compare the dosimeter response to radium-226 (226Ra) and cesium-137 (137Cs). The signal from the OSL was quantified using a microSTARii® OSL reader also produced by Landauer Inc. Dose-response curves were developed for 226Ra and 137Cs experiments (5 dosimeters each) at thirteen absorbed doses. Individual dosimeter response was tracked by serial number. Linear regression analysis was performed to determine if there were significant differences between the intercepts of the …


Analyzing The Effects Of Ultrafast Laser Processing On Mechanical Properties Of 3d-Printed Pla Parts, Darshan Pramodbhai Yadav Dec 2023

Analyzing The Effects Of Ultrafast Laser Processing On Mechanical Properties Of 3d-Printed Pla Parts, Darshan Pramodbhai Yadav

Theses and Dissertations

Recent advances in additive manufacturing technologies have already led to wide-scale adoption of 3D-printed parts in various industries. The expansion in choice of materials that can be processed, particularly using Fused Deposition Modeling (FDM), and the steady advancements in dimensional accuracy control have extended the range of applications far beyond rapid prototyping. However, additive manufacturing still has considerable limitations compared to traditional and subtractive manufacturing processes. This work addresses limitations associated with the as-deposited surface roughness of 3D-printed parts. The effects of roughness-induced stress concentrations were studied on ultimate tensile strength and fatigue life. The samples were manufactured using a …


Acoustically Levitated Whispering-Gallery Mode Microlasers, H. M. Reynoso-De La Cruz, E. D. Hernández-Campos, E. Ortiz-Ricardo, A. Martínez-Borquez, I. Rosas-Román, V. Contreras, G. Ramos-Ortiz, B. Mendoza-Santoyo, Cecilia Zurita-Lopez, R. Castro-Beltrán Nov 2023

Acoustically Levitated Whispering-Gallery Mode Microlasers, H. M. Reynoso-De La Cruz, E. D. Hernández-Campos, E. Ortiz-Ricardo, A. Martínez-Borquez, I. Rosas-Román, V. Contreras, G. Ramos-Ortiz, B. Mendoza-Santoyo, Cecilia Zurita-Lopez, R. Castro-Beltrán

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Acoustic levitation has become a crucial technique for contactless manipulation in several fields, particularly in biological applications. However, its application in the photonics field remains largely unexplored. In this study, we implement an affordable and innovative phased-array levitator that enables stable trapping in the air of micrometer dye-doped droplets, thereby enabling the creation of microlasers. For the first time, this paper presents a detailed performance of the levitated microlaser cavity, supported by theoretical analysis concerning the hybrid technology based on the combination of whispering-gallery modes and acoustic fields. The pressure field distribution inside the acoustic cavity is numerically solved and …


Experiments With Monopoles, Rings And Knots In Spinor Bose-Einstein Condensates, Alina A. Blinova Nov 2023

Experiments With Monopoles, Rings And Knots In Spinor Bose-Einstein Condensates, Alina A. Blinova

Doctoral Dissertations

Topological excitations are ubiquitous in nature, their charge being a naturally-quantized, conserved quantity that can exhibit particle-like behavior. Spinor Bose-Einstein condensates (BECs) are an exceptionally versatile system for the study and exploration of topological excitations. Between the spin-1 and spin-2 87Rb condensates there are seven possible broken-symmetry magnetic phases, with each one hosting unique opportunities for topological defects. We have created and observed several novel topological excitations in a spinor 87Rb BEC. In this dissertation I present and discuss three principal experimental findings: (1) The discovery of an Alice ring, or a half-quantum vortex ring, emerging from a …


Thermal Conductivity And Mechanical Properties Of Interlayer-Bonded Graphene Bilayers, Afnan Mostafa Nov 2023

Thermal Conductivity And Mechanical Properties Of Interlayer-Bonded Graphene Bilayers, Afnan Mostafa

Masters Theses

Graphene, an allotrope of carbon, has demonstrated exceptional mechanical, thermal, electronic, and optical properties. Complementary to such innate properties, structural modification through chemical functionalization or defect engineering can significantly enhance the properties and functionality of graphene and its derivatives. Hence, understanding structure-property relationships in graphene-based metamaterials has garnered much attention in recent years. In this thesis, we present molecular dynamics studies aimed at elucidating structure-property relationships that govern the thermomechanical response of interlayer-bonded graphene bilayers.

First, we present a systematic and thorough analysis of thermal transport in interlayer-bonded twisted bilayer graphene (IB-TBG). We find that the introduction of interlayer C-C …


The Fate Of The Crossbridge After Phosphate Rebinding: Implications For Fatigue, Christopher P. Marang Nov 2023

The Fate Of The Crossbridge After Phosphate Rebinding: Implications For Fatigue, Christopher P. Marang

Doctoral Dissertations

In response to repeated intense contractile activity, a muscle’s ability to generate force decreases due to the created state of muscular fatigue. This compromised force production state is dependent on changes within the microenvironment of muscle thought to alter the function of the force generating, contractile protein myosin. For example, phosphate (Pi), elevated during fatigue, has been suggested to alter how myosin generates force. However, the effects of Pi are not straightforward, as muscle fiber data suggest that Pi's interaction with myosin may be force-dependent. In particular, Pi has no effect on maximal shortening …


Quantitative, Photocurrent Multidimensional Coherent Spectroscopy, Adam Halaoui Nov 2023

Quantitative, Photocurrent Multidimensional Coherent Spectroscopy, Adam Halaoui

Electronic Theses and Dissertations

Multidimensional coherent spectroscopy (MDCS) is a quickly growing field that has a lot of advantages over more conventional forms of spectroscopy. These advantages all come from the fact that MDCS allows us to get time resolved correlated emission and absorption spectra using very precisely chosen interactions between the density matrix and the excitation laser. MDCS spectra gives the researcher a lot of information that can be extracted purely through qualitative analysis. This is possible because state couplings are entirely separated on the spectra, and once we know how to read the data, we can see how carriers transport in the …


Equilibrium And Quench-Dynamical Studies Of Ultracold Fermions In Ring-Shaped Optical Traps, Daniel Gordon Allman Nov 2023

Equilibrium And Quench-Dynamical Studies Of Ultracold Fermions In Ring-Shaped Optical Traps, Daniel Gordon Allman

Dartmouth College Ph.D Dissertations

The unique capability to precisely tune the few and many-body configurations of
ultracold Fermi gases provides a multi-dimensional platform for studying novel, ex-
otic aspects of quantum systems. These aspects include superfluid/superconducting
phenomena supported by potentially exotic pairing mechanisms, non-equilibrium and
critical dynamics, and proposed quantum sensing or computing applications based on
atomtronics.
Ring geometries provide natural arenas for probing transport properties of super-
fluids. Metastable states of quantized superfluid flow —persistent currents— exhibit
remarkable properties, and the manner in which they form is an incredibly rich sub-
ject. Studies of quenched superfluids demonstrate that persistent currents can form
from …


Ferroelectric Hafnia Surface In Action, Xia Hong Sep 2023

Ferroelectric Hafnia Surface In Action, Xia Hong

Nebraska Center for Materials and Nanoscience: Faculty Publications

Piezoresponse microscopy and spectroscopy reveal the inextricable role of surface electrochemistry in stabilizing and controlling ferroelectricity in doped hafnia.

Doped hafnia (HfO2), a relatively new member of the ferroelectric family, has challenged in many ways our conventional perception of ferroelectric oxides. It possesses extremely localized electric dipoles that are independently switchable,1 making it immune to finite size effects — the loss of long-range dipole order in ferroic materials due to size scaling. While polycrystalline grains and microstructures can yield lower polarization and poorer cycling behavior in canonical ferroelectrics such as Pb(Zr,Ti)O3 and BaTiO3, in …


Theoretical Framework Of Exchange Coupled Tripartite Spin Systems With Magnetic Anisotropy And Predictions Of Spin And Electronic Transport Properties For Their Use In Quantum Architectures, Eric Switzer Aug 2023

Theoretical Framework Of Exchange Coupled Tripartite Spin Systems With Magnetic Anisotropy And Predictions Of Spin And Electronic Transport Properties For Their Use In Quantum Architectures, Eric Switzer

Electronic Theses and Dissertations, 2020-

There has been significant interest in spin systems involving two or more coupled spins as a single logical qubit, particularly for scalable quantum computing architectures. Recent realizations include the so-called singlet-triplet qubits and coupled magnetic molecules. An important class of coupled-spin systems, the three-spin paradigm for spin greater than 1/2, has not yet been fully realized in scalable qubit architectures. In this thesis, I develop the theoretical framework to investigate a class of tripartite spin models for realistic systems. First, I model a spin 1/2 particle (e.g., an electron) and two spin 1 particles (in a dimer arrangement) coupled with …


Design And Fabrication Of A Trapped Ion Quantum Computing Testbed, Christopher A. Caron Aug 2023

Design And Fabrication Of A Trapped Ion Quantum Computing Testbed, Christopher A. Caron

Masters Theses

Here we present the design, assembly and successful ion trapping of a room-temperature ion trap system with a custom designed and fabricated surface electrode ion trap, which allows for rapid prototyping of novel trap designs such that new chips can be installed and reach UHV in under 2 days. The system has demonstrated success at trapping and maintaining both single ions and cold crystals of ions. We achieve this by fabricating our own custom surface Paul traps in the UMass Amherst cleanroom facilities, which are then argon ion milled, diced, mounted and wire bonded to an interposer which is placed …


Anomaly Detection In The Molecular Structure Of Gallium Arsenide Using Convolutional Neural Networks, Timothy Roche *, Aihua W. Wood, Philip Cho *, Chancellor Johnstone Aug 2023

Anomaly Detection In The Molecular Structure Of Gallium Arsenide Using Convolutional Neural Networks, Timothy Roche *, Aihua W. Wood, Philip Cho *, Chancellor Johnstone

Faculty Publications

This paper concerns the development of a machine learning tool to detect anomalies in the molecular structure of Gallium Arsenide. We employ a combination of a CNN and a PCA reconstruction to create the model, using real images taken with an electron microscope in training and testing. The methodology developed allows for the creation of a defect detection model, without any labeled images of defects being required for training. The model performed well on all tests under the established assumptions, allowing for reliable anomaly detection. To the best of our knowledge, such methods are not currently available in the open …


Study Of Highly Charged Ion Charge Exchange With Applications To X-Ray Astrophysics, Richard Mattish Aug 2023

Study Of Highly Charged Ion Charge Exchange With Applications To X-Ray Astrophysics, Richard Mattish

All Dissertations

Highly charged ions (HCIs) exist in many hot astrophysical environments where they play an important role in plasma dynamics. Charge exchange involving highly charged ions has been shown to be responsible for many observed X-ray emissions from a variety of astrophysical sources. Proper modeling of these environments requires an understanding of this process, including the electronic structure of each ion species as well as their charge exchange cross sections. This dissertation investigates charge exchange processes with highly charged ions which are present in astrophysical environments via a laboratory-based study.

The Clemson University electron beam ion trap (CUEBIT) laboratory was utilized …


High-Power Laser Cooling And Temperature-Dependent Fluorescence Studies Of Ytterbium Doped Silica, Brian Topper Aug 2023

High-Power Laser Cooling And Temperature-Dependent Fluorescence Studies Of Ytterbium Doped Silica, Brian Topper

Optical Science and Engineering ETDs

Experimental observation of optical refrigeration using ytterbium doped silica glass in recent years has created a new solution for heat mitigation in high-power laser systems, nonlinear fiber experiments, integrated photonics, and precision metrology. Current efforts of different groups focus on compositional optimization, fiber fabrication, and investigating how much silica can be cooled with a laser. At the start of this work, the best effort in laser cooling ytterbium doped silica saw cooling by 6 K from room temperature. This dissertation follows the experimental efforts that culminated in the increase of this initial record by one order of magnitude. Comprehensive spectroscopic …


Simulating Strongly Coupled Many-Body Systems With Quantum Algorithms, Manqoba Qedindaba Hlatshwayo Aug 2023

Simulating Strongly Coupled Many-Body Systems With Quantum Algorithms, Manqoba Qedindaba Hlatshwayo

Dissertations

The complexity of the nuclear many-body problem is a severe obstacle to finding a general and accurate numerical approach needed to simulate medium-mass and heavy nuclei. Even with the advent of exascale classical computing, the impediment of exponential growth of the Hilbert space renders the problem intractable for most classical calculations. In the last few years, quantum algorithms have become an attractive alternative for practitioners because quantum computers are more efficient in simulating quantum physics than classical computers. While a fully fault-tolerant universal quantum computer will not be realized soon, this dissertation explores quantum algorithms for simulating nuclear physics suitable …


Study Of Radiation Effects In Gan-Based Devices, Han Gao Jul 2023

Study Of Radiation Effects In Gan-Based Devices, Han Gao

Electrical Engineering Theses and Dissertations

Radiation tolerance of wide-bandgap Gallium Nitride (GaN) high-electron-mobility transistors (HEMT) has been studied, including X-ray-induced TID effects, heavy-ion-induced single event effects, and neutron-induced single event effects. Threshold voltage shift is observed in X-ray irradiation experiments, which recovers over time, indicating no permanent damage formed inside the device. Heavy-ion radiation effects in GaN HEMTs have been studied as a function of bias voltage, ion LET, radiation flux, and total fluence. A statistically significant amount of heavy-ion-induced gate dielectric degradation was observed, which consisted of hard breakdown and soft breakdown. Specific critical injection level experiments were designed and carried out to explore …


Application Of A Diatomic Molecule Model Potential To A Series Of Homo- And Heterodiatomic Molecules, Dorien E. Carpenter, Javier E. Hasbun Jul 2023

Application Of A Diatomic Molecule Model Potential To A Series Of Homo- And Heterodiatomic Molecules, Dorien E. Carpenter, Javier E. Hasbun

Georgia Journal of Science

We apply a one-dimensional classical model of a diatomic molecule model potential with modifications to H2, HF, LiF, N2, and CO. We obtain the unknown parameters of this model by digitizing plots of the potential curves for the molecules from a published, Hartree-Fock based theoretical electron correlation calculation (Piris 2017). We then apply the method of successive approximations to the model in order to calculate the wavenumber for each molecule in the series. The wavenumber depends on a parameter which in turn depends on the initial conditions. The value of this parameter for each individual molecule …


Size Effect On The Optical Response Of Cylindrical Palladium Nanoparticles, Salem Marhaba, Mohammed Khalaf Jun 2023

Size Effect On The Optical Response Of Cylindrical Palladium Nanoparticles, Salem Marhaba, Mohammed Khalaf

BAU Journal - Science and Technology

In this work, a computational study is carried out to investigate the optical response of palladium nano-cylinders. The Finite Element Method (FEM) is employed using the COMSOL MULTIPHYSICS simulation program to calculate the scattering, absorption, and extinction cross-sections. The influence of the size of the cylindrical nanoparticles on their optical properties is discussed. The results are plotted for a broad spectral range of wavelengths from ultra-violet to infra-red of the incident electromagnetic wave on the cylindrical nanoparticles.


Intrinsic Point Defects (Vacancies And Antisites) In Cdgep2 Crystals, Timothy D. Gustafson, Nancy C. Giles, Peter G. Schunemann, Kevin T. Zawilski, Kent L. Averett, Jonathan E. Slagle, Larry E. Halliburton Jun 2023

Intrinsic Point Defects (Vacancies And Antisites) In Cdgep2 Crystals, Timothy D. Gustafson, Nancy C. Giles, Peter G. Schunemann, Kevin T. Zawilski, Kent L. Averett, Jonathan E. Slagle, Larry E. Halliburton

Faculty Publications

Cadmium germanium diphosphide (CdGeP2) crystals, with versatile terahertz-generating properties, belong to the chalcopyrite family of nonlinear optical materials. Other widely investigated members of this family are ZnGeP2 and CdSiP2. The room-temperature absorption edge of CdGeP2 is near 1.72 eV (720 nm). Cadmium vacancies, phosphorous vacancies, and germanium-on-cadmium antisites are present in as-grown CdGeP2 crystals. These unintentional intrinsic point defects are best studied below room temperature with electron paramagnetic resonance (EPR) and optical absorption. Prior to exposure to light, the defects are in charge states that have no unpaired spins. Illuminating a CdGeP2 …


A Monte-Carlo Simulation Of Gamma Rays In A Sodium Iodide Detector, Ben Kessler Jun 2023

A Monte-Carlo Simulation Of Gamma Rays In A Sodium Iodide Detector, Ben Kessler

Physics

Gamma rays principally interact with matter through Compton scattering, photoelectric effect, pair production, and triplet production. The focus of this simulation is to study the theoretical energy spectrum created by gamma rays from a Cesium-137 source, which produces gamma photons with an energy of 0.662 MeV. At this energy level, most interactions are results of Compton scatters and the photoelectric effect. Therefore, this simulation only models those two effects on gamma rays. Using Monte Carlo methods and the Metropolis algorithm to sample the probability distributions of the two effects allowed for the simulation of gamma rays in a Sodium Iodide …


Design Modular Command And Data Handling Subsystem Hardware Architectures, Abdullah Alsalmani Jun 2023

Design Modular Command And Data Handling Subsystem Hardware Architectures, Abdullah Alsalmani

Theses

Over the past few years, On-Board Computing Systems for satellites have been facing a limited level of modularity. Modularity is the ability to reuse and reconstruct the system from a set of predesigned units, with minimal additional engineering effort. CDHS hardware systems currently available have a limited ability to scale with mission needs. This thesis addresses the integration of smaller form factor CDHS modules used for nanosatellites with the larger counterparts that are used for larger missions. In particular, the thesis discusses the interfacing between Modular Computer Systems based on Open Standard commonly used in large spacecrafts and PC/104 used …


Filaments And Their Application To Air Lasing, Spectroscopy, And Guided Discharge, Ali Rastegari May 2023

Filaments And Their Application To Air Lasing, Spectroscopy, And Guided Discharge, Ali Rastegari

Optical Science and Engineering ETDs

Laser filamentation is a fascinating phenomenon that occurs when an intense laser beam travels through transparent materials, in particular air. At sufficiently high power (TW in the near IR, GW in the UV), instead of spreading out like a regular laser beam, something remarkable happens: the laser beam becomes tightly focused, creating a thin and intense column of light called a laser filament. Laser filamentation is characterized by two main properties: (I) a high-intensity core that remains narrow over long distances beyond the Rayleigh range and (II) a low-density plasma channel within the core. In recent years, laser filamentation has …


Effective Non-Hermiticity And Topology In Markovian Quadratic Bosonic Dynamics, Vincent Paul Flynn May 2023

Effective Non-Hermiticity And Topology In Markovian Quadratic Bosonic Dynamics, Vincent Paul Flynn

Dartmouth College Ph.D Dissertations

Recently, there has been an explosion of interest in re-imagining many-body quantum phenomena beyond equilibrium. One such effort has extended the symmetry-protected topological (SPT) phase classification of non-interacting fermions to driven and dissipative settings, uncovering novel topological phenomena that are not known to exist in equilibrium which may have wide-ranging applications in quantum science. Similar physics in non-interacting bosonic systems has remained elusive. Even at equilibrium, an "effective non-Hermiticity" intrinsic to bosonic Hamiltonians poses theoretical challenges. While this non-Hermiticity has been acknowledged, its implications have not been explored in-depth. Beyond this dynamical peculiarity, major roadblocks have arisen in the search …


Photophysical And Photochemical Processes In Small Molecules And Materials For Solar Energy Conversion, Ethan Lambert May 2023

Photophysical And Photochemical Processes In Small Molecules And Materials For Solar Energy Conversion, Ethan Lambert

Honors Theses

The work covered in this thesis all falls under the theme of photophysical processes after light and matter interact. Those of primary interest are Raman scattering induced vibrations and excited state dynamics probed by transient absorption spectroscopy. Small molecules are studied with Raman spectroscopy and computational chemistry. These studies unearth the shifts in vibrational frequency as a function of charge transfer or receipt and how a quantitative assay of natural orbital populations and delocalization can offer both the nature and magnitude of this charge transfer. Further, a method is presented that builds upon previous work within the academic family tree; …


Exploring The Interaction Of Minor-Groove-Binder Netropsin With Dna Using Optical Tweezers, Irbazhusain Shaikh May 2023

Exploring The Interaction Of Minor-Groove-Binder Netropsin With Dna Using Optical Tweezers, Irbazhusain Shaikh

Honors Program Theses and Projects

Netropsin is an antibiotic that binds in the minor grooves of DNA, which also exhibits anticancer properties. There have been many previous studies that explored the binding of this drug to DNA using traditional methods where an ensemble averaging is used. In this study we explore the interaction of Netropsin with DNA at a single molecule level using dual beam optical tweezers. We trapped and stretched a single DNA molecule using optical tweezers to measure the force experienced by the DNA as a function of extension in the absence and presence of various concentrations of Netropsin. Our results show the …


Domain Wall Saddle Point Morphology In Ferroelectric Triglycine Sulfate, C. J. Mccluskey, A. Kumar, Alexei Gruverman, I. Luk’Yanchuk, J. M. Gregg May 2023

Domain Wall Saddle Point Morphology In Ferroelectric Triglycine Sulfate, C. J. Mccluskey, A. Kumar, Alexei Gruverman, I. Luk’Yanchuk, J. M. Gregg

Alexei Gruverman Publications

Ferroelectric domain walls, across which there is a divergence in polarization, usually have enhanced electrical conductivity relative to bulk. However, in lead germanate, head-to-head and tail-to-tail walls are electrically insulating. Recent studies have shown that this is because, when oppositely oriented domains meet, polar divergence is obviated by a combination of domain bifurcation and suspected local dipolar rotation. To explore the uniqueness, or otherwise, of this microstructure, we have used tomographic piezoresponse force microscopy to map three-dimensional domain morphologies in another uniaxial ferroelectric system: triglycine sulfate. This mapping reveals an abundance of domain wall saddle points, which are characteristic of …


Pointing Control And Stabilization Of The High-Energy Uv Laser For Laser-Assisted Charge Exchange, Martin Joseph Kay May 2023

Pointing Control And Stabilization Of The High-Energy Uv Laser For Laser-Assisted Charge Exchange, Martin Joseph Kay

Doctoral Dissertations

Laser-Assisted Charge Exchange (LACE) is an experimental method of charge exchange injection into a proton accumulator ring that is being developed at the Spallation Neutron Source (SNS) in Oak Ridge National Laboratory (ORNL) as an alternative to hazardous injection foils. The current scheme of LACE requires a high-energy, low-repetition-rate UV (355 nm) laser beam (140 mJ pulses at 10 Hz) to be transported over 65 meters to the laser-particle interaction point (IP) in a high-radiation area of the accelerator. Thermal effects and other disturbances along the free-space laser transport line cause the beam to slowly drift away from the IP …


Materials Characterization For Microwave Atom Chip Development, Jordan Shields May 2023

Materials Characterization For Microwave Atom Chip Development, Jordan Shields

Undergraduate Honors Theses

This thesis describes research to characterize materials to be implemented on a microwave atom trap chip, which will be able to trap and spatially manipulate atoms using the spin-specific microwave AC Zeeman effect. Potential applications of this research include atom-based interferometry and quantum computing.

Namely, this thesis describes the characterization of the following: (1) the dielectric constant of a well-characterized substrate, Rogers RO4350B, in order to provide proof-of-concept for a method that can be applied to the chip’s substrate, aluminum nitride (AlN), (2) the maximum current that will be able to be applied to the chip, and (3) surface roughness …