Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Atomic, Molecular and Optical Physics

Theses/Dissertations

2020

Institution
Keyword
Publication

Articles 1 - 30 of 34

Full-Text Articles in Physics

Treated Hfo2 Based Rram Devices With Ru, Tan, Tin As Top Electrode For In-Memory Computing Hardware, Yuvraj Dineshkumar Patel Dec 2020

Treated Hfo2 Based Rram Devices With Ru, Tan, Tin As Top Electrode For In-Memory Computing Hardware, Yuvraj Dineshkumar Patel

Theses

The scalability and power efficiency of the conventional CMOS technology is steadily coming to a halt due to increasing problems and challenges in fabrication technology. Many non-volatile memory devices have emerged recently to meet the scaling challenges. Memory devices such as RRAMs or ReRAM (Resistive Random-Access Memory) have proved to be a promising candidate for analog in memory computing applications related to inference and learning in artificial intelligence. A RRAM cell has a MIM (Metal insulator metal) structure that exhibits reversible resistive switching on application of positive or negative voltage. But detailed studies on the power consumption, repeatability and retention …


Laser-Induced Breakdown Spectroscopy And Plasmas Containing Cyanide, Christopher Matthew Helstern Dec 2020

Laser-Induced Breakdown Spectroscopy And Plasmas Containing Cyanide, Christopher Matthew Helstern

Doctoral Dissertations

This dissertation focuses on laser-induced plasma of diatomic molecular cyanide. Optical breakdown plasma generation is produced by high-peak-power 1064 nm Q-switched nanosecond pulsed radiation. Laser-induced breakdown is performed on a 1:1 molar gas mixture of carbon dioxide and nitrogen held at a fixed pressure of 760 Torr, a 1:1 molar gas mixture of carbon dioxide and nitrogen held at a fixed pressure of 2069 Torr, and a flowing 1:1 molar gas mixture of carbon dioxide and nitrogen flowing at a rate of 100 mL per minute. Plasma shockwave measurements in laboratory air are shown to determine the shock front geometry …


Embedded-Atom-Method Modeling Of Alkali-Metal/Transition-Metal Interfaces, Jake D. Christensen Dec 2020

Embedded-Atom-Method Modeling Of Alkali-Metal/Transition-Metal Interfaces, Jake D. Christensen

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Understanding the thermal properties of materials is essential to using those materials for technological advancement which can benefit civilization. For example, it has been proposed that essential components of tokamaks, devices which perform fusion, be made out of tungsten with a thin layer of lithium on the surface. To that end, this thesis seeks to calculate the thermal properties of a layer of alkali atoms, like lithium and sodium, on tungsten and molybdenum substrates. We use an Embedded Atom Method (EAM) model to perform our calculations. This type of model has been widely used to describe the interaction between atoms …


Nuclear-Targeted Gold Nanoparticles Enhance The Effects Of Radiation Therapy With And Without Liposomal Delivery, Maureen Aliru Dec 2020

Nuclear-Targeted Gold Nanoparticles Enhance The Effects Of Radiation Therapy With And Without Liposomal Delivery, Maureen Aliru

Dissertations & Theses (Open Access)

Less that 10% of pancreatic cancer patients are eligible for curative resection, and clinical trials evaluating chemoradiation in locally advanced patients with unresectable disease have been largely disappointing. New and creative therapeutic approaches are needed to address the unment need for treatment options. The objective of this thesis is to advance radiosensitization of treatment-resistant densely desmoplastic pancreatic cancer using nanoparticles to surmount biological barriers to effective particle distribution for DNA-targeting.

Clinical translation of radiosensitizing nanoparticles has stalled owing to technical challenges. Current strategies to use AuNPs for radiosensitization require large quantities of gold, kilovoltage x-rays, immediate irradiation after intravenous administration, …


Development And Applications Of Condensed Phase Cavity Ring-Down Spectroscopy For Studies Of Electrochemical And Interfacial., Shadi Ahmad Alnaanah Dec 2020

Development And Applications Of Condensed Phase Cavity Ring-Down Spectroscopy For Studies Of Electrochemical And Interfacial., Shadi Ahmad Alnaanah

Electronic Theses and Dissertations

This dissertation reports the development of ultra-sensitive platforms based on the laser cavity ring-down spectroscopic (CRDS) technique to enable optical and spectroelectrochemical investigations in the condensed phase of matter at challenging scenarios. Firstly, an electrically-active solid/liquid interface for the evanescent-wave cavity ring-down spectroscopy (EW-CRDS) was developed to specroelectrochemically investigate redox events. By coating the interface of total internal reflection of the EW-CRDS platform with a high quality optically transparent and electrically conductive indium tin oxide thin film (ITO), we demonstrated that sufficiently long ring-down times can be achieved to allow for spectroelectrochemical investigations of redox species at solid/liquid interfaces at …


Kinetic Monte Carlo Investigations Involving Atomic Layer Deposition Of Metal-Oxide Thinfilms, David Tyler Magness Dec 2020

Kinetic Monte Carlo Investigations Involving Atomic Layer Deposition Of Metal-Oxide Thinfilms, David Tyler Magness

MSU Graduate Theses

Atomic Layer Deposition is a method of manufacturing thin film materials. Metal-oxides such as zinc-oxide and aluminum-oxide are particularly interesting candidates for use in microelectronic devices such as tunnel junction barriers, transistors, Schottky diodes, and more. By adopting a 3D Kinetic Monte Carlo model capable of simulating ZnO deposition, the effect of parameters including deposition temperature, chamber pressure, and composition of the initial substrate at the beginning of deposition can be investigated. This code generates two random numbers: One is used to select a chemical reaction to occur from a list of all possible reactions and the second is used …


Applications Of Cathodoluminescence In Plasmonic Nanostructures And Ultrathin Inas Quantum Layers, Qigeng Yan Dec 2020

Applications Of Cathodoluminescence In Plasmonic Nanostructures And Ultrathin Inas Quantum Layers, Qigeng Yan

Graduate Theses and Dissertations

Due to the advanced focusing ability, characterization methods based on the electron-beam excitation have been broadly applied to investigate nanomaterials. Structural or compositional information is commonly acquired using electron microscopes. Moreover, taking advantage of the super spatial resolution of the focused electron beam, optical properties of nanomaterials can be also obtained. Herein, general concepts and processes of the interaction between electrons and materials are studied. Two specific optical nanomaterials, including plasmonic nanostructures and semiconductor quantum layers, are investigated by the cathodoluminescence (CL) measurement.

Surface plasmonic resonance can be generated when high-energy electrons strike the interface between the dielectric medium and …


Radial Basis Densities And The Density Functional-Based Atom-In-Molecule: Designing Charge-Transfer Potentials, Godwin Amo-Kwao Nov 2020

Radial Basis Densities And The Density Functional-Based Atom-In-Molecule: Designing Charge-Transfer Potentials, Godwin Amo-Kwao

Nanoscience and Microsystems ETDs

Classical potentials that are capable of describing charge transfer and charge polarization in complex systems are of central importance for classical atomistic simulation of biomolecules and materials. Current potentials—regardless of the system—do not generalize well, and, with the exception of highly-specialized empirical potentials tuned for specific systems, cannot describe chemical bond formation and breaking. The charge-transfer embedded atom method (CT-EAM), a formal, DFT-based extension to the original EAM for metals, has been developed to address these issues by modeling charge distortion and charge transfer in interacting systems using pseudoatom building blocks instead of the electron densities of isolated atoms. CT-EAM …


Adsorption And Reconfiguration Of Amphiphiles At Silica-Water Interfaces: Role Of Electrostatic Interactions, Van Der Waals Forces And Hydrogen Bonds, Yao Wu Nov 2020

Adsorption And Reconfiguration Of Amphiphiles At Silica-Water Interfaces: Role Of Electrostatic Interactions, Van Der Waals Forces And Hydrogen Bonds, Yao Wu

LSU Doctoral Dissertations

The ability to explore and predict metastable structures of hybrid self-assemblies is of central importance for the next generation of advanced materials with novel properties. As compared to their thermodynamically stable forms, the kinetically stabilized materials show improved functionality potentially over their stable counterparts. The self-assembly processes usually originate from weak intermolecular interactions, involving a dynamic competition between attractive and repulsive interactions. These weak forces, including van der Waals (vdW), electrostatic interaction and the hydrogen bonding (H-bonding), can be tuned by external stimuli, e.g., confinement, temperature and ionization, and consequently driving hybrid materials into different configurations. It is challenging to …


Physics-Constrained Hyperspectral Data Exploitation Across Diverse Atmospheric Scenarios, Nicholas M. Westing Sep 2020

Physics-Constrained Hyperspectral Data Exploitation Across Diverse Atmospheric Scenarios, Nicholas M. Westing

Theses and Dissertations

Hyperspectral target detection promises new operational advantages, with increasing instrument spectral resolution and robust material discrimination. Resolving surface materials requires a fast and accurate accounting of atmospheric effects to increase detection accuracy while minimizing false alarms. This dissertation investigates deep learning methods constrained by the processes governing radiative transfer to efficiently perform atmospheric compensation on data collected by long-wave infrared (LWIR) hyperspectral sensors. These compensation methods depend on generative modeling techniques and permutation invariant neural network architectures to predict LWIR spectral radiometric quantities. The compensation algorithms developed in this work were examined from the perspective of target detection performance using …


Low-Information Radiation Imaging Using Rotating Scatter Mask Systems And Neural Network Algorithms, Robert J. Olesen Sep 2020

Low-Information Radiation Imaging Using Rotating Scatter Mask Systems And Neural Network Algorithms, Robert J. Olesen

Theses and Dissertations

While recent studies have demonstrated the directional capabilities of the single-detector rotating scatter mask (RSM) system for discrete, dual-particle environments, there has been little progress towards adapting it as a true imaging device. In this research, two algorithms were developed and tested using an RSM mask design previously optimized for directional detection and simulated 137Cs signals from a variety of source distributions. The first, maximum-likelihood expectation-maximization (ML-EM), was shown to generate noisy images, with relatively low accuracy (145% average relative error) and signal-to-noise ratio (0.27) for most source distributions simulated. The second, a novel regenerative neural network (ReGeNN), performed exceptionally …


Generation Of Correlated Dual Frequency Combs With Pm Fiber Lasers For High-Precision Metrology, Hanieh Afkhamiardakani Jul 2020

Generation Of Correlated Dual Frequency Combs With Pm Fiber Lasers For High-Precision Metrology, Hanieh Afkhamiardakani

Optical Science and Engineering ETDs

Intracavity Phase Interferometry (IPI) using two correlated, counter-propagating frequency combs (pulse trains) in mode-locked lasers has evolved into a powerful technique for high-precision metrology. In this method a physical parameter to be measured imparts a phase shift onto a pulse circulating in the laser cavity. Inside a laser cavity, that phase shift becomes a frequency shift (phase shift/round-trip time) applied to the whole frequency comb created by this pulse as it exits the cavity at each round-trip. This frequency shift is measured by interfering this comb with a reference comb created by a reference pulse circulating in the same mode-locked …


Radiation-Balanced Fiber Lasers And Amplifiers, Esmaeil Mobini Souchelmaei Mr Jul 2020

Radiation-Balanced Fiber Lasers And Amplifiers, Esmaeil Mobini Souchelmaei Mr

Optical Science and Engineering ETDs

Over the past decades, high-power fiber lasers and amplifiers have been extensively under research to achieve higher output powers. However, temperature rise in the core of fiber lasers and amplifiers has been a big issue in power-scaling. Radiation-balancing is a viable technique introduced for effective heat mitigation in lasers and amplifiers by S. Bowman in 1995. Radiation-balancing relies on solid-state laser cooling as a self-cooling mechanism to mitigate the generated heat in lasers and amplifiers. To implement the mentioned idea in fiber lasers and amplifiers, a set of issues should be scrutinized; (i) the amenability of silica glass (as the …


Quantum Random Walk Search And Grover's Algorithm - An Introduction And Neutral-Atom Approach, Anna Maria Houk Jun 2020

Quantum Random Walk Search And Grover's Algorithm - An Introduction And Neutral-Atom Approach, Anna Maria Houk

Physics

In the sub-field of quantum algorithms, physicists and computer scientist take classical computing algorithms and principles and see if there is a more efficient or faster approach implementable on a quantum computer, i.e. a ”quantum advantage”. We take random walks, a widely applicable group of classical algorithms, and move them into the quantum computing paradigm. Additionally, an introduction to a popular quantum search algorithm called Grover’s search is included to guide the reader to the development of a quantum search algorithm using quantum random walks. To close the gap between algorithm and hardware, we will look at using neutral-atom (also …


Generating Entanglement With The Dynamical Lamb Effect, Mirko Amico Jun 2020

Generating Entanglement With The Dynamical Lamb Effect, Mirko Amico

Dissertations, Theses, and Capstone Projects

According to quantum field theory, the vacuum is filled with virtual particles which can be turned into real ones under the influence of external perturbations. Phenomena of this kind are commonly referred to as quantum vacuum phenomena. Several quantum vacuum phenomena related to the peculiar nature of the quantum vacuum have been predicted, some of which, such as the Lamb shift and the Casimir effect, have been experimentally found. Other examples of quantum vacuum phenomena include the Unruh effect, the dynamical Casimir effect and the dynamical Lamb effect. The dynamical Lamb effect was first predicted by considering the situation of …


Density Functional Theory Calculations Of Al Doped Hafnia For Different Crystal Symmetry Configurations, Joshua Steier May 2020

Density Functional Theory Calculations Of Al Doped Hafnia For Different Crystal Symmetry Configurations, Joshua Steier

Seton Hall University Dissertations and Theses (ETDs)

Dogan et al.[1], investigated the causes of ferroelectricity in doped hafnia using ab initio methods. Similarly, we investigated the stability of Al doped hafnia using quantum mechanical methods.

There are many different phases of Hafnia: monoclinic, tetragonal, cubic and orthorhombic. Starting with the monoclinic phase of Hafnia, Hafnia undergoes phase transitions which result in different space groups. The temperature at which the tetragonal phase is induced is 2000 K and cubic phase is induced at 2900 K[1]. Different dielectric constants vary from phase to phase. The average dielectric constants are highest for the cubic and tetragonal phases. In order to …


Molecular Insights Into Microbial Adhesion, Roger Davies Klein May 2020

Molecular Insights Into Microbial Adhesion, Roger Davies Klein

Arts & Sciences Electronic Theses and Dissertations

Antibiotic-resistant bacterial infections are a serious and immediate threat to global public health. In the United States alone, over 2 million individuals develop antibiotic-resistant infections annually, resulting in 23,000 deaths and $20 billion in excess health care costs. Virulence factors that allow bacteria to invade and persist within the host are promising targets for novel antimicrobial agents that could be used to curb the spread of antibiotic resistance. Development of therapeutics that can selectively eliminate pathogenic bacteria while sparing the beneficial host microbiota requires a detailed molecular understanding of critical virulence factors that facilitate interactions between pathogens and their environments. …


The Primary Volatile Composition Of Comet C/2015 Er61 (Panstarrs), Aaron Butler May 2020

The Primary Volatile Composition Of Comet C/2015 Er61 (Panstarrs), Aaron Butler

Theses

In the outer edges of the solar system exist two regions: the Kuiper belt and Oort cloud. These two regions have a high amount of icy bodies (comets) orbiting the Sun. Comets located within the Oort cloud and Kuiper belt contain an ancient codex to the solar systems contents, before the formation of our solar system. Presented are near-infrared, high-resolution (λ/Δλ ~40000) data obtained from the immersion-grating echelle spectrograph iSHELL at the 3m NASA Infrared Telescope Facility (IRTF) in Maunakea, Hawaii of the Oort cloud comet C/2015 ER61 (PANSTARRS). Observations took place on April 15 and 17 in 2017 while …


Comparison Of The Vibrational Modes Of Thiolated Gold Nanoparticles Undergoing Core-Conversions Via Raman Spectroscopy, William Gregory Cannella Jr. May 2020

Comparison Of The Vibrational Modes Of Thiolated Gold Nanoparticles Undergoing Core-Conversions Via Raman Spectroscopy, William Gregory Cannella Jr.

Honors Theses

In this project, the vibrational characteristics/vibrational modes are explored via Raman Spectroscopy for thiolated-gold nanoparticles. This class of compounds is also known as gold nanoparticles (AuNPs). They remain of great interest in research areas such as catalysis, gold dependent nanoelectronics, drug delivery, and sensing, due to their unique size-dependent optical, chiroptical, and electronic properties. Vibrational spectroscopy of thiolated gold nanoparticles are oftentimes considered nontrivial as the compounds strongly absorb light in the visible region of the electromagnetic spectrum, are generally considered weak scatterers, and give off large amounts of fluorescence. This combined with their black appearance, susceptibility to localized heating, …


An Overview Of Lasers And Their Applications, Luis Cristian Giovanni Guerrero May 2020

An Overview Of Lasers And Their Applications, Luis Cristian Giovanni Guerrero

Physics

This paper is an overview of lasers and their applications. The fundamentals of laser operation are covered as well as the various applications of advanced laser systems. The primary focus is to highlight some of the technological advancements made possible by lasers in the last half-century.


A Study Of Optical Nonlinearities At The Single-Photon Level For Quantum Logic, Balakrishnan Viswanathan May 2020

A Study Of Optical Nonlinearities At The Single-Photon Level For Quantum Logic, Balakrishnan Viswanathan

Graduate Theses and Dissertations

In this dissertation, we shall focus on theoretically studying quantum nonlinear optical schemes to construct a conditional phase gate at the single-photon level. With an aim to develop analytical models, we shall carry out a rigorous quantized multimode field analysis of some of these schemes involving only the interacting field operators. More specifically, we shall first study the three-wave mixing process involving two single-photons in a second-order nonlinear medium (x(2)) under two different cases viz. when the photons are traveling with equal velocities and when they are traveling with different velocities, and explore the possibility of using them for building …


Applications Of The Negatively-Charged Silicon Vacancy Color Center In Diamond, Forrest A. Hubert Apr 2020

Applications Of The Negatively-Charged Silicon Vacancy Color Center In Diamond, Forrest A. Hubert

Optical Science and Engineering ETDs

The spatial resolution and fluorescence signal amplitude in stimulated emission depletion (STED) microscopy is limited by the photostability of available fluorophores. Here, we show that negatively-charged silicon vacancy (SiV) centers in diamond are promising fluorophores for STED microscopy, owing to their photostable, near-infrared emission and favorable photophysical properties. A home-built pulsed STED microscope was used to image shallow implanted SiV centers in bulk diamond at room temperature. We performed STED microscopy on isolated SiV centers and observed a lateral full-width-at-half-maximum spot size of 89 ± 2 nm, limited by the low available STED laser pulse energy (0.4 nJ). For a …


Mid-Ir Optical Refrigeration And Radiation Balanced Lasers, Saeid Rostami Apr 2020

Mid-Ir Optical Refrigeration And Radiation Balanced Lasers, Saeid Rostami

Optical Science and Engineering ETDs

This dissertation reports recent advances in mid-infrared (mid-IR) optical refrigeration and Radiation Balanced Lasers (RBLs). The first demonstration of optical refrigeration in Ho:YLF and Tm:YLF crystals as promising mid-IR laser cooling candidates is reported. Room temperature laser cooling efficiency of Tm- and Ho-doped crystals at different excitation polarization is measured and their external quantum efficiency and background absorption are extracted. Complete characterization of laser cooling samples is obtained via performing detailed low-temperature spectroscopic analysis, and their minimum achievable temperature as well as conditions to achieve laser cooling efficiency enhancement in mid-IR are investigated. By developing a Thulium-doped fiber amplifier, seeded …


Molecular Spectroscopy: A Study Of Molecules In Earth And Planetary Atmospheres, Mahdi Yousefi Atashgah Apr 2020

Molecular Spectroscopy: A Study Of Molecules In Earth And Planetary Atmospheres, Mahdi Yousefi Atashgah

Physics Theses & Dissertations

The four most abundant isotopologues (N2O, 15NNO, N15NO, and NN18O) of nitrous oxide have been measured in the Earth's atmosphere by infrared remote sensing with the Atmospheric Chemistry Experiment (ACE) Fourier transform spectrometer. These satellite observations have provided a near global picture of N2O isotopic fractionation. The relative abundance of the heavier isotopologues increase with altitude and with latitude in the stratosphere as the air becomes older.

Near global 85°S{85°N atmospheric measurement of carbonyl sulfide (OCS), including the minor OC34S and O13CS isotopologues, were made by the …


Comparison Of The Accuracy Of Rayleigh-Rice Polarization Factors To Improve Microfacet Brdf Models, Rachel L. Wolfgang Mar 2020

Comparison Of The Accuracy Of Rayleigh-Rice Polarization Factors To Improve Microfacet Brdf Models, Rachel L. Wolfgang

Theses and Dissertations

Microfacet BRDF models assume that a surface has many small microfacets making up the roughness of the surface. Despite their computational simplicity in applications in remote sensing and scene generation, microfacet models lack the physical accuracy of wave optics models. In a previous work, Butler proposed to replace the Fresnel reflectance term of microfacet models with the Rayleigh-Rice polarization factor, Q, to create a more accurate model. This work examines the novel model that combines microfacet and wave optics terms for its accuracy in the pp and ss polarized cases individually. The model is fitted to the polarized data in …


Rapid Analysis Of Plutonium Surrogate Material Via Hand-Held Laser-Induced Breakdown Spectroscopy, Ashwin P. Rao Mar 2020

Rapid Analysis Of Plutonium Surrogate Material Via Hand-Held Laser-Induced Breakdown Spectroscopy, Ashwin P. Rao

Theses and Dissertations

This work investigated the capability of a portable LIBS device to detect and quantify dopants in plutonium surrogate alloys, specifically gallium, which is a common stabilizer used in plutonium alloys. The SciAps Z500-ER was utilized to collect spectral data from cerium-gallium alloys of varying gallium concentrations. Calibration models were built to process spectra from the Ce-Ga alloys and calculate gallium concentration from spectral emission intensities. Univariate and multivariate analysis techniques were used to determine limits of detection of different emission line ratios. Spatial mapping measurements were conducted to determine the device's ability to detect variations in gallium concentration on the …


The Design Of A Continuous Wave Molecular Nitrogen Stimulated Raman Laser In The Visible Spectrum, Timothy J. Bate Mar 2020

The Design Of A Continuous Wave Molecular Nitrogen Stimulated Raman Laser In The Visible Spectrum, Timothy J. Bate

Theses and Dissertations

Hollow-core photonic crystal fibers (HCPCFs) shows promise as a hybrid laser with higher nonlinear process limits and small beam size over long gain lengths. This work focuses on the design of a CW molecular nitrogen (N2) stimulated Raman laser. N2 offers Raman gains scaling up to 900 amg, scaling higher than H2. The cavity experiment showed the need to include Rayleigh scattering in the high pressure required for N2 Raman lasing. Even at relatively low pressure ssuch as 1,500 psi, high conversion percentages should be found if the fiber length is chosen based on …


Measurement Of The 160Gd(P,N)160Tb Excitation Function From 4 18 Mev, Using A Stacked Foil Technique, Ryan K. Chapman Mar 2020

Measurement Of The 160Gd(P,N)160Tb Excitation Function From 4 18 Mev, Using A Stacked Foil Technique, Ryan K. Chapman

Theses and Dissertations

A stack of thin Gd, Ti, and Cu foils were irradiated with an 18 MeV proton beam at Lawrence-Berkeley National Laboratory's 88-Inch Cyclotron to investigate the 160Gd(p,n)160Tb nuclear reaction for nuclear forensics applications. This experiment will improve knowledge of 160Tb production rates, allowing 160Tb to be efficiently created in a foil stack consisting of other proton induced isotopes for forensics applications. A set of 15 measured cross sections between 4-18 MeV for 160Gd(p,n)160Tb were obtained using a stacked foil technique. The foil stack consisted of one stainless steel, one iron, fifteen gadolinium, …


Dual-Axis Solar Tracker, Bryan Kennedy Jan 2020

Dual-Axis Solar Tracker, Bryan Kennedy

All Undergraduate Projects

Renewable energies, and fuels that are not fossil fuel-based, are one of the prolific topics of debate in modern society. With climate change now becoming a primary focus for scientists and innovators of today, one of the areas for the largest amount of potential and growth is that of the capturing and utilization of Solar Energy. This method involves using a mechanical system to track the progression of the sun as it traverses the sky throughout the day. A dual-axis solar tracker such as the one designed and built for this project, can follow the sun both azimuthally and in …


A Search For Resonant And Non-Resonant Di-Higgs Production In The Γγbb Channel Using The Atlas Detector, Tyler James Burch Jan 2020

A Search For Resonant And Non-Resonant Di-Higgs Production In The Γγbb Channel Using The Atlas Detector, Tyler James Burch

Graduate Research Theses & Dissertations

This dissertation presents a search for resonant and non-resonant di-Higgs production in the γγb ̄b final state using data from the ATLAS detector at the Large Hadron Collider (LHC). The search is performed on 36.1 fb−1 of data from proton-proton collisions at a center-of-mass energy of √s= 13 TeV collected in 2015 and 2016.

No significant excesses are observed in this search. The non-resonant analysis sets limits on the HH→γγb ̄b cross-section times branching ratio, with an upper observed (expected) limit of 0.73 (0.93) pb. The observed (expected) limits on the Higgs boson trilinear coupling at 95% Confidence Level (CL) …