Open Access. Powered by Scholars. Published by Universities.®

Hurricanes

Other Earth Sciences

Articles 1 - 2 of 2

Full-Text Articles in Meteorology

Hydrometeorological Responses To Abrupt Land Surface Change Following Hurricane Michael, Shannon Alexis Nelson May 2021

Hydrometeorological Responses To Abrupt Land Surface Change Following Hurricane Michael, Shannon Alexis Nelson

LSU Master's Theses

While many of the destructive environmental conditions associated with tropical cyclones are well recognized, tropical cyclone-induced defoliation, a reduction in green leaves and mature vegetation, has been largely overlooked as a source of environmental stress following tropical cyclone passage. The land surface change associated with defoliation reduces evapotranspiration and shade, thus altering boundary layer moisture and energy fluxes that drive the local water cycle, for many months after tropical cyclone passage. Understanding the potential for any hydrometeorological impacts arising from such abrupt land surface change is important for guiding future post-hurricane preparedness and recovery planning in coastal communities.

This thesis …


Towards Predicting Street-Level Inundation: Using Operational Forecast Modeling Techniques During 2011 Hurricane Irene, J. D. Loftis, H. V. Wang, D. R. Forrest Jan 2015

Towards Predicting Street-Level Inundation: Using Operational Forecast Modeling Techniques During 2011 Hurricane Irene, J. D. Loftis, H. V. Wang, D. R. Forrest

Presentations

Storm surge-induced coastal inundation poses numerous personal, commercial, industrial, and sociopolitical challenges for society. Flooding can be caused by the combination of storm surge and river-induced inland flooding in many locations throughout the coastal plain. The cross-disciplinary nature of the hydrodynamics involved (hydraulics, oceanography, and hydrology), coupled with the complexity of the atmospheric forcing, makes a numerical model the best approach for a comprehensive study of the dynamics of coastal inundation.

This study builds upon the lessons learned from forecast modeling experiences during 2011 Hurricane Irene in Tidewater Virginia, to ascertain the most effective way to approach predicting street-level inundation. …