Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Meteorology

Tornado Outbreak False Alarm Probabilistic Forecasts With Machine Learning, Kirsten Reed Snodgrass May 2023

Tornado Outbreak False Alarm Probabilistic Forecasts With Machine Learning, Kirsten Reed Snodgrass

Theses and Dissertations

Tornadic outbreaks occur annually, causing fatalities and millions of dollars in damage. By improving forecasts, the public can be better equipped to act prior to an event. False alarms (FAs) can hinder the public’s ability (or willingness) to act. As such, a probabilistic FA forecasting scheme would be beneficial to improving public response to outbreaks.

Here, a machine learning approach is employed to predict FA likelihood from Storm Prediction Center (SPC) tornado outbreak forecasts. A database of hit and FA outbreak forecasts spanning 2010 – 2020 was developed using historical SPC convective outlooks and the SPC Storm Reports database. Weather …


Correction Of Back Trajectories Utilizing Machine Learning, Britta F. Gjermo Morrison Mar 2021

Correction Of Back Trajectories Utilizing Machine Learning, Britta F. Gjermo Morrison

Theses and Dissertations

The goal of this work was to analyze 24-hour back trajectory performance from a global, low-resolution weather model compared to a high-resolution limited area weather model in particular meteorological regimes, or flow patterns using K-means clustering, an unsupervised machine learning technique. The duration of this study was from 2015-2019 for the contiguous United States (CONUS). Three different machine learning algorithms were tested to study the utility of these methods improving the performance of the CFS relative to the performance of the RAP. The aforementioned machine learning techniques are linear regression, Bayesian ridge regression, and random forest regression. These results mean …


Automated Image Interpretation For Science Autonomy In Robotic Planetary Exploration, Raymond Francis Aug 2014

Automated Image Interpretation For Science Autonomy In Robotic Planetary Exploration, Raymond Francis

Electronic Thesis and Dissertation Repository

Advances in the capabilities of robotic planetary exploration missions have increased the wealth of scientific data they produce, presenting challenges for mission science and operations imposed by the limits of interplanetary radio communications. These data budget pressures can be relieved by increased robotic autonomy, both for onboard operations tasks and for decision- making in response to science data.

This thesis presents new techniques in automated image interpretation for natural scenes of relevance to planetary science and exploration, and elaborates autonomy scenarios under which they could be used to extend the reach and performance of exploration missions on planetary surfaces.

Two …