Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Atmospheric Sciences

Breakdown Of Itcz-Like Pv Patterns, Ajay Raghavendra, Thomas A. Guinn Sep 2016

Breakdown Of Itcz-Like Pv Patterns, Ajay Raghavendra, Thomas A. Guinn

Beyond: Undergraduate Research Journal

The Inter-Tropical Convergence Zone (ITCZ) is a zonal belt of intense convection, responsible for the genesis of over 80% of all tropical cyclones. This region of intense diabatic heating and shear results in a maximum of Ertel's potential vorticity (PV) meeting Rayleigh's necessary condition for barotropic instability. A fundamental issue is understanding the necessary precursor events leading to the breakdown of the ITCZ and subsequent formation of tropical cyclones. Our research examines the non-linear PV dynamics of the breakdown of both finite-length and infinite-length vorticity strips of varying widths and shapes, simulating the ITCZ found near the tropical eastern Pacific …


Using A High-Altitude Balloon Platform To Observe And Measure Ozone Uptake Over Agricultural Landscapes In Central Illinois, Cody Sabo Jul 2016

Using A High-Altitude Balloon Platform To Observe And Measure Ozone Uptake Over Agricultural Landscapes In Central Illinois, Cody Sabo

DePaul Discoveries

An increase in the amount of factories and machines that emit greenhouse gases (GHGs) has caused the concentration of GHGs to rise steeply since the industrial era. These emissions create compounds that react with sunlight to form ozone, a GHG. Ozone not only traps heat in the atmosphere causing long-term global issues, but it also causes direct harm to both plants and animals. The damage that ozone causes to plants is due to plants taking the gas up through their stomata. Measuring ozone uptake has traditionally been a difficult and expensive process. This study proposes a novel approach towards measuring …


Combinatory Effect Of Changing Co2, Temperature, And Long-Term Growth Temperature On Isoprene Emissions, Michael Cole Jul 2016

Combinatory Effect Of Changing Co2, Temperature, And Long-Term Growth Temperature On Isoprene Emissions, Michael Cole

DePaul Discoveries

Isoprene, the most abundant hydrocarbon in the atmosphere, plays a significant role in atmospheric chemistry. Its reactions with NOx lead to the formation of ozone in the lower troposphere, which is harmful to plants and detrimental to human health. As air temperatures and CO2 concentrations increase with climate change, it is uncertain how isoprene emissions from plants will respond. We hypothesized that isoprene emissions will increase with the combination of increasing temperature and CO­2 concentrations. We predict that oaks grown at a higher temperature will exhibit an increase in isoprene emissions with combined short-term increases in temperature …


The Correlation Between Basal Isoprene Emissions And Climate Of The Native Range Across Oak Species, Mary J. Babiez Jul 2016

The Correlation Between Basal Isoprene Emissions And Climate Of The Native Range Across Oak Species, Mary J. Babiez

DePaul Discoveries

Isoprene is a biogenic volatile organic compound that is emitted by various plant species and plays an important role in the chemistry of the atmosphere. When it reacts with pollutants in the air, such as nitrogen oxides, the precursor to ozone (O3) is formed. In this experiment, we measured leaf emissions from 20 different oak species at the Morton Arboretum (Lisle, Illinois). The aim was to better understand differences in isoprene emissions across oak species. Since emissions have been found to protect leaves against brief periods of heat stress, we hypothesized that oaks native to areas with greater …