Open Access. Powered by Scholars. Published by Universities.®

Michael P. Hickey

Tsunamis and storm surges

Articles 1 - 5 of 5

Full-Text Articles in Atmospheric Sciences

Propagation Of Tsunami-Driven Gravity Waves Into The Thermosphere And Ionosphere, Michael P. Hickey, G. Schubert, R. L. Walterscheid Dec 2015

Propagation Of Tsunami-Driven Gravity Waves Into The Thermosphere And Ionosphere, Michael P. Hickey, G. Schubert, R. L. Walterscheid

Michael P. Hickey

Recent observations have revealed large F-region electron density perturbations (~100%) and total electron content (TEC) perturbations (~30%) that appear to be correlated with tsunamis. The characteristic speed and horizontal wavelength of the disturbances are ~200 m/s and ~400 km. We describe numerical simulations using our spectral full-wave model (SFWM) of the upward propagation of a spectrum of gravity waves forced by a tsunami, and the interaction of these waves with the F-region ionosphere. The SFWM describes the propagation of linear, steady-state acoustic-gravity waves in a nonisothermal atmosphere with the inclusion of eddy and molecular diffusion of heat and momentum, ion …


Propagation Of Tsunami-Driven Gravity Waves Into The Thermosphere And Ionosphere, Michael P. Hickey, G. Schubert, R. L. Walterscheid Dec 2015

Propagation Of Tsunami-Driven Gravity Waves Into The Thermosphere And Ionosphere, Michael P. Hickey, G. Schubert, R. L. Walterscheid

Michael P. Hickey

Recent observations have revealed large F-region electron density perturbations (~100%) and total electron content (TEC) perturbations (~30%) that appear to be correlated with tsunamis. The characteristic speed and horizontal wavelength of the disturbances are ~200 m/s and ~400 km. We describe numerical simulations using our spectral full-wave model (SFWM) of the upward propagation of a spectrum of gravity waves forced by a tsunami, and the interaction of these waves with the F-region ionosphere. The SFWM describes the propagation of linear, steady-state acoustic-gravity waves in a nonisothermal atmosphere with the inclusion of eddy and molecular diffusion of heat and momentum, ion …


Atmospheric Airglow Fluctuations Due To A Tsunami‐Driven Gravity Wave Disturbance, Michael P. Hickey Ph.D., G. Schubert, R. L. Walterscheid Sep 2015

Atmospheric Airglow Fluctuations Due To A Tsunami‐Driven Gravity Wave Disturbance, Michael P. Hickey Ph.D., G. Schubert, R. L. Walterscheid

Michael P. Hickey

A spectral full‐wave model is used to study the upward propagation of a gravity wave disturbance and its effect on atmospheric nightglow emissions. Gravity waves are generated by a surface displacement that mimics a tsunami having a maximum amplitude of 0.5 m, a characteristic horizontal wavelength of 400 km, and a horizontal phase speed of 200 m/s. The gravity wave disturbance can reach F region altitudes before significant viscous dissipation occurs. The response of the OH Meinel nightglow in the mesopause region (∼87 km altitude) produces relative brightness fluctuations, which are ∼1% of the mean for overhead viewing. The wave …


The 2009 Samoa And 2010 Chile Tsunamis As Observed In The Ionosphere Using Gps Total Electron Content, David A. Galvan, Attila Komjathy, Michael P. Hickey Ph.D., Anthony J. Mannucci Sep 2015

The 2009 Samoa And 2010 Chile Tsunamis As Observed In The Ionosphere Using Gps Total Electron Content, David A. Galvan, Attila Komjathy, Michael P. Hickey Ph.D., Anthony J. Mannucci

Michael P. Hickey

Ground‐based Global Positioning System (GPS) measurements of ionospheric total electron content (TEC) show variations consistent with atmospheric internal gravity waves caused by ocean tsunamis following two recent seismic events: the Samoa earthquake of 29 September 2009 and the Chile earthquake of 27 February 2010. Both earthquakes produced ocean tsunamis that were destructive to coastal communities near the epicenters, and both were observed in tidal gauge and buoy measurements throughout the Pacific Ocean. We observe fluctuations in TEC correlated in time, space, and wave properties with these tsunamis using the Jet Propulsion Laboratory’s Global Ionospheric Mapping software. These TEC measurements were …


Ionospheric Signatures Of Tohoku-Oki Tsunami Of March 11, 2011: Model Comparisons Near The Epicenter, David A. Galvan, Attila Komjathy, Michael P. Hickey, Philip Stephens, Jonathan Snively, Y. Tony Song, Mark D. Butala, Anthony J. Mannucci Sep 2015

Ionospheric Signatures Of Tohoku-Oki Tsunami Of March 11, 2011: Model Comparisons Near The Epicenter, David A. Galvan, Attila Komjathy, Michael P. Hickey, Philip Stephens, Jonathan Snively, Y. Tony Song, Mark D. Butala, Anthony J. Mannucci

Michael P. Hickey

We observe ionospheric perturbations caused by the Tohoku earthquake and tsunami of March 11, 2011. Perturbations near the epicenter were found in measurements of ionospheric total electron content (TEC) from 1198 GPS receivers in the Japanese GEONET network. For the first time for this event, we compare these observations with the estimated magnitude and speed of a tsunami-driven atmospheric gravity wave, using an atmosphere-ionosphere-coupling model and a tsunami model of sea-surface height, respectively. Traveling ionospheric disturbances (TIDs) were observed moving away from the epicenter at approximate speeds of 3400 m/s, 1000 m/s and 200–300 m/s, consistent with Rayleigh waves, acoustic …