Open Access. Powered by Scholars. Published by Universities.®

Physics

PDF

Institution
Keyword
Publication Year
Publication
Publication Type

Articles 1 - 30 of 252

Full-Text Articles in Atmospheric Sciences

Low Cost Magnetometer Calibration And Distributed Simultaneous Multipoint Ionospheric Measurements From A Sounding Rocket Platform, Joshua W. Milford Apr 2024

Low Cost Magnetometer Calibration And Distributed Simultaneous Multipoint Ionospheric Measurements From A Sounding Rocket Platform, Joshua W. Milford

Doctoral Dissertations and Master's Theses

Low-cost and low-size-weight-and-power (SWaP) magnetometers can provide greater accessibility for distributed simultaneous measurements in the ionosphere, either onboard sounding rockets or on CubeSats. The Space and Atmospheric Instrumentation Laboratory (SAIL) at Embry-Riddle Aeronautical University has launched a multitude of sounding rockets in recent history: one night-time mid-latitude rocket from Wallops Flight Facility in August 2022 and three mid-latitude rockets from White Sands Missile Range during the October 2023 annular solar eclipse. All rockets had a comprehensive suite of instruments for electrodynamics and neutral dynamics measurements. Among this suite was one science-grade three-axis fluxgate magnetometer (Billingsley TFM65VQS / TFM100G2) and up …


Effect Of Morphology And An Upstream Tall Building On A Street Canyon Flow, Haoran Du Jul 2023

Effect Of Morphology And An Upstream Tall Building On A Street Canyon Flow, Haoran Du

Electronic Thesis and Dissertation Repository

The effects of the morphological model and the existence of an upstream tall building on the turbulent street canyon flow and the overlying boundary layer are investigated in a wind tunnel, using Stereoscopic Particle Image Velocimetry (S-PIV) measurements. The velocity variances, Reynolds shear stress, and turbulent kinetic energy are found to be larger than in a similar idealized street canyon model. Increasing building height results in a decrease in vertical mass fluxes across the opening of the canyon, at least in the canyon portion directly downstream of the building. The interaction between the large-scale structures in the overlying boundary layer …


Studies Of The Ionosphere-Thermosphere Responses To Multi-Scale Energy Deposition Processes, Haonan Wu May 2023

Studies Of The Ionosphere-Thermosphere Responses To Multi-Scale Energy Deposition Processes, Haonan Wu

All Dissertations

The Ionosphere-Thermosphere (I-T) system is greatly affected by the magnetospheric energy deposition from above and subjected to forcing from the lower atmosphere simultaneously. A central problem in studying the coupled I-T system is to analyze the multi-scale processes naturally embedded in both ways. Magnetospheric energy input such as auroral precipitation and electric field demonstrates multi-scale structures during magnetic storms, resulting in multi-scale I-T responses when deposited into the I-T system. To better quantify the multi-scale aurora and electric field, we developed a new data assimilation model based on a multi-resolution Gaussian process model to synthesize empirical models and observational data …


Spectra Of Atmospheric And Astronomical Molecules, W. D. Cameron May 2023

Spectra Of Atmospheric And Astronomical Molecules, W. D. Cameron

Physics Theses & Dissertations

Spectroscopy techniques are focused on spectra of molecules of interest to the Earth’s atmosphere and/or astronomy and astrophysics. Laboratory spectroscopy as well as remote satellite sensing are applied. Using the Fourier transform spectrometer aboard the Atmospheric Chemistry Experiment (ACE) satellite to measure the absorption spectra of the Earth’s atmosphere through solar occultation limb observation demonstrates that volcanic eruption plumes can be located and tracked through their SO2 content. The presence of those plumes is corroborated by overlaying infrared atmospheric aerosol extinction observed by the 1 μm imager on the same satellite. Tracking atmospheric aerosol movement with the ACE …


The Behavior Of Partially Coherent Twisted Space-Time Beams In Atmospheric Turbulence, Milo W. Hyde Iv Jan 2023

The Behavior Of Partially Coherent Twisted Space-Time Beams In Atmospheric Turbulence, Milo W. Hyde Iv

Faculty Publications

We study how atmospheric turbulence affects twisted space-time beams, which are non-stationary random optical fields whose space and time dimensions are coupled with a stochastic twist. Applying the extended Huygens–Fresnel principle, we derive the mutual coherence function of a twisted space-time beam after propagating a distance z through atmospheric turbulence of arbitrary strength. We specialize the result to derive the ensemble-averaged irradiance and discuss how turbulence affects the beam’s spatial size, pulse width, and space-time twist. Lastly, we generate, in simulation, twisted space-time beam field realizations and propagate them through atmospheric phase screens to validate our analysis.


Physical, Optical, And Chemical Properties Of Light Absorbing Aerosols And Their Climatic Impacts, Susan Mathai Jan 2023

Physical, Optical, And Chemical Properties Of Light Absorbing Aerosols And Their Climatic Impacts, Susan Mathai

Dissertations, Master's Theses and Master's Reports

Aerosols are particles suspended in the atmosphere; they are emitted during natural phenomena such as dust storms, wildfires, and volcanic eruptions, and during anthropogenic activities like household wood burning, vehicles operations, and industrial productions, or they can form in the atmosphere from gas to particle partition. Aerosols impact earth’s weather and climate by absorbing and scattering the incoming solar and the outgoing earth thermal radiation and interacting with clouds. The optical properties of aerosols evolve as the chemical and physical properties vary during their residence in the atmosphere. In addition, the aerosols’ properties strongly depend on the vertical distribution in …


Stratospheric Glider Measurements Of Atmospheric Parameters, Anisa Haghighi Jan 2023

Stratospheric Glider Measurements Of Atmospheric Parameters, Anisa Haghighi

Theses and Dissertations--Mechanical Engineering

In June 2021 a series of high altitude flights were conducted in Spaceport America, NM, using a balloon launched Uncrewed Aircraft System (UAS) to assess its capability to conduct measurements of various atmospheric properties and study turbulence in the troposphere and lower stratosphere. This UAS descends using an automated flight trajectory. The instruments aboard included a NASA-developed infrasonic microphone to evaluate its remote turbulence detection capabilities and a five-hole probe capable of measuring the in situ wind vector. Also on board were temperature, humidity and wind profile sensors. This document focuses on the atmospheric properties measured at high altitudes, the …


Kinetic Modeling Of Ionospheric Outflows Observed By The Visions-1 Sounding Rocket, Robert M. Albarran Ii Sep 2022

Kinetic Modeling Of Ionospheric Outflows Observed By The Visions-1 Sounding Rocket, Robert M. Albarran Ii

Doctoral Dissertations and Master's Theses

Plasma escape from the high-latitude ionosphere (ion outflow) serves as a significant source of heavy plasma to magnetospheric plasma sheet and ring current regions. Outflows alter mass density and reconnection rates, hence global responses of the magnetosphere. The VISIONS-1 (VISualizing Ion Outflow via Neutral atom imaging during a Substorm) sounding rocket was launched on Feb. 7, 2013 at 8:21 UTC from Poker Flat, Alaska, into an auroral substorm with the objective of identifying the drivers and dynamics of nightside ion outflow at altitudes where it is initiated, below 1000 km. Energetic ion data from the VISIONS-1 polar cap boundary crossing …


A Review On Natural Gamma Radiation Dose Levels And Its Health Effects, Shankramma K, Kamsali Nagaraja, Sathish L A, Charan Kumar K Sep 2022

A Review On Natural Gamma Radiation Dose Levels And Its Health Effects, Shankramma K, Kamsali Nagaraja, Sathish L A, Charan Kumar K

International Journal of Health and Allied Sciences

Exposure to the natural background gamma radiations in both indoor and outdoor environments is inevitable. The long-term exposure to such radiations could result in lung cancer (sometimes leukaemia, CNS tumours); and hence it must be constantly monitored. In this paper, an attempt is made to review the background natural gamma radiation doses reported at various locations for the south Indian environment and it was found that the gamma levels in coastal regions were relatively higher than those in sub continental locations but in most of the locations the annual effective dose rate was within the permissible limits as per UNSCEAR


Improving On Atmospheric Turbulence Profiles Derived From Dual Beacon Hartmann Turbulence Sensor Measurements, Alexander S. Boeckenstedt, Jack E. Mccrae, Santasri Bose-Pillai, Benjamin Wilson Jun 2022

Improving On Atmospheric Turbulence Profiles Derived From Dual Beacon Hartmann Turbulence Sensor Measurements, Alexander S. Boeckenstedt, Jack E. Mccrae, Santasri Bose-Pillai, Benjamin Wilson

Faculty Publications

Atmospheric turbulence is an inevitable source of wavefront distortion in all fields of long range laser propagation and sensing. However, the distorting effects of turbulence can be corrected using wavefront sensors contained in adaptive optics systems. Such systems also provide deeper insight into surface layer turbulence, which is not well understood. A unique method of profile generation by a dual source Hartmann Turbulence Sensor (HTS) technique is introduced here. Measurements of optical turbulence along a horizontal path were taken to create C2n profiles. Two helium-neon laser beams were directed over an inhomogeneous horizontal path and captured by the HTS. The …


Knocking Down Nox: Examining The Effects Of Transportation Electrification On Urban Ozone Production In The South Coast Air Basin, Jason Beal May 2022

Knocking Down Nox: Examining The Effects Of Transportation Electrification On Urban Ozone Production In The South Coast Air Basin, Jason Beal

Macalester Journal of Physics and Astronomy

With last year’s commitment to all in-state sales of new passenger cars and trucks being zero-emission by 2035 (California Executive Order N-79-20), California is leading the charge for transportation electrification in the United States. Despite being at the forefront of climate change management and mitigation, California has some of the worst air quality in the nation. While primarily motivated by a desire to reduce carbon dioxide emissions and reliance on fossil fuels, transportation electrification will also have a significant impact on local air quality. The goal of this study is to quantify and qualify this impact in the context of …


Acoustic Waves In The Upper Atmosphere, Geoffrey Blayne Schulthess May 2022

Acoustic Waves In The Upper Atmosphere, Geoffrey Blayne Schulthess

All Graduate Plan B and other Reports, Spring 1920 to Spring 2023

Atmospheric waves can be generated by tropospheric sources such as earthquakes and explosions, causing significant disturbances in the upper atmosphere and ionosphere, where radio wave communications take place. For this analysis, they will be separated into two sub-groups called acoustic waves and gravity waves. Because each of these waves have unique frequency ranges, they can be observed and measured in order to determine their source type and location. Past studies attempted to build the connections between these waves with severe storms and earthquakes, which have improved our understanding of their complexity. Because of the complex nature of these waves, simplified …


The Impact Of Sea-Level Rise In Numerically Modeled Landfalling Hurricanes: Katrina And The Gulf Coast., Serenity Nadirah Mercuri May 2022

The Impact Of Sea-Level Rise In Numerically Modeled Landfalling Hurricanes: Katrina And The Gulf Coast., Serenity Nadirah Mercuri

Electronic Theses and Dissertations

With climate change, landfalling hurricanes become an increasing threat to coastal regions. However, the interactions between the coastal landscape and landfalling hurricanes are often overlooked when addressing sea-level rise outside of inundation and independent of sea surface temperature. This study analyzed the potential impacts regarding structure and intensity as a result of sea-level rise in the Gulf of Mexico using the WRF-ARW numerical model coupled with a 1D ocean model. Analysis showed that 10 m windspeed from landfall forward was higher in modified coastlines, and minimum sea-level pressure post-landfall was consistently lower for modified runs where storms maintain a higher …


Physical Investigation Of Downburst Winds And Applicability To Full Scale Events, Federico Canepa Feb 2022

Physical Investigation Of Downburst Winds And Applicability To Full Scale Events, Federico Canepa

Electronic Thesis and Dissertation Repository

Thunderstorm winds, i.e. downbursts, are cold descending currents originating from cumulonimbus clouds which, upon the impingement on the ground, spread radially with high intensities. The downdraft phase of the storm and the subsequent radial outflow that is formed can cause major issues for aviation and immense damages to ground-mounted structures. Thunderstorm winds present characteristics completely different from the stationary Gaussian synoptic winds, which largely affect the mid-latitude areas of the globe in the form of extra-tropical cyclones. Downbursts are very localized winds in both space and time. It follows that their statistical investigation, by means of classical full scale anemometric …


Connections Between Atmospheric Blocking, General Circulation, And Weather Extremes In A Hierarchy Of Models And Various Climates, Veeshan Narinesingh Feb 2022

Connections Between Atmospheric Blocking, General Circulation, And Weather Extremes In A Hierarchy Of Models And Various Climates, Veeshan Narinesingh

Dissertations, Theses, and Capstone Projects

The field of geophysical fluid dynamics (GFD) includes the study of both the motion and thermodynamic aspects of the atmosphere. These properties are of particular importance because they directly influence both local and large-scale weather and climate and are associated with various phenomena. One phenomena that is particularly influential is atmospheric blocking. Atmospheric blocks are persistent, quasi-stationary anticyclones (a.k.a. high-pressure systems) that occur in the atmosphere and disrupt the flow. Blocks are known to induce heat extremes and cold spells, as well as steer storms and cause numerous types of hazards. Yet despite the hazards associated with blocks, our current …


Influence Of Boreal Summer Intraseasonal Oscillation On Rainfall Extremes In The Philippines, Lyndon Mark P. Olaguera, John A. Manalo, Jun Matsumoto Dec 2021

Influence Of Boreal Summer Intraseasonal Oscillation On Rainfall Extremes In The Philippines, Lyndon Mark P. Olaguera, John A. Manalo, Jun Matsumoto

Physics Faculty Publications

This study investigates the impact of the northward/northwestward propagating 30–60-day mode of the boreal summer intraseasonal oscillation (BSISO) on the extreme rainfall events in the Philippines during the June–September (JJAS) season from 1979 to 2018. The Philippines domain is divided into the three latitudinal regions: Luzon region (13°–22°N), Visayas region (10°–13°N), and Mindanao region (5°–10°N) to account for the regional differences in the timing of extreme rainfall events. The probability density functions of JJAS rainfall are skewed towards higher values relative to the non-BSISO days in BSISO Phases 6–8, Phases 5–7, and Phases 4–6 over the Luzon, Visayas, and Mindanao …


Acoustic/Gravity Wave Phenomena In Wide-Field Imaging: From Data Analysis To A Modeling Framework For Observability In The Mlt Region And Beyond, Jaime Aguilar Guerrero Nov 2021

Acoustic/Gravity Wave Phenomena In Wide-Field Imaging: From Data Analysis To A Modeling Framework For Observability In The Mlt Region And Beyond, Jaime Aguilar Guerrero

Doctoral Dissertations and Master's Theses

Acoustic waves, gravity waves, and larger-scale tidal and planetary waves are significant drivers of the atmosphere’s dynamics and of the local and global circulation that have direct and indirect impacts on our weather and climate. Their measurements and characterization are fundamental challenges in Aeronomy that require a wide range of instrumentation with distinct operational principles. Most measurements share the common features of integrating optical emissions or effects on radio waves through deep layers of the atmosphere. The geometry of these integrations create line-of-sight effects that must be understood, described, and accounted for to properly present the measured data in traditional …


Particulate Oxalate-To-Sulfate Ratio As An Aqueous Processing Marker: Similarity Across Field Campaigns And Limitations, Miguel Ricardo A. Hilario, Ewan Crosbie, Paola Angela Bañaga, Grace Betito, Rachel A. Braun, Maria Obiminda L. Cambaliza, Andrea F. Corral, Melliza Templonuevo Cruz, Jackie E. Dibb, Genevieve Rose Lorenzo, Alexander B. Macdonald, Claire E. Robinson, Michael Shook, James Bernard Simpas, Connor Stahl, Edward Winstead, Luke Ziemba, Armin Sorooshian Oct 2021

Particulate Oxalate-To-Sulfate Ratio As An Aqueous Processing Marker: Similarity Across Field Campaigns And Limitations, Miguel Ricardo A. Hilario, Ewan Crosbie, Paola Angela Bañaga, Grace Betito, Rachel A. Braun, Maria Obiminda L. Cambaliza, Andrea F. Corral, Melliza Templonuevo Cruz, Jackie E. Dibb, Genevieve Rose Lorenzo, Alexander B. Macdonald, Claire E. Robinson, Michael Shook, James Bernard Simpas, Connor Stahl, Edward Winstead, Luke Ziemba, Armin Sorooshian

Physics Faculty Publications

Leveraging aerosol data from multiple airborne and surface-based field campaigns encompassing diverse environmental conditions, we calculate statistics of the oxalate-sulfate mass ratio (median: 0.0217; 95% confidence interval: 0.0154 – 0.0296; R = 0.76; N = 2948). Ground-based measurements of the oxalate-sulfate ratio fall within our 95% confidence interval, suggesting the range is robust within the mixed layer for the submicrometer particle size range. We demonstrate that dust and biomass burning emissions can separately bias this ratio towards higher values by at least one order of magnitude. In the absence of these confounding factors, the 95% confidence interval of the ratio …


Synoptic Conditions And Potential Causes Of The Extreme Heavy Rainfall Event Of January 2009 Over Mindanao Island, Philippines, Lyndon Mark P. Olaguera, Michelle Español Caballar, Joseph Cabacungan De Mata, Loida Ann Torres Dagami, Jun Matsumoto, Hisayuki Kubota Jul 2021

Synoptic Conditions And Potential Causes Of The Extreme Heavy Rainfall Event Of January 2009 Over Mindanao Island, Philippines, Lyndon Mark P. Olaguera, Michelle Español Caballar, Joseph Cabacungan De Mata, Loida Ann Torres Dagami, Jun Matsumoto, Hisayuki Kubota

Physics Faculty Publications

This study investigates the synoptic conditions that led to the heavy rainfall/flood (HRF) event in Mindanao Island, Philippines (122 −127°E; 5 −10°N), on January 2009 (JAN2009 HRF) that are less emphasized in previous works. Extensive flooding was reported over Cagayan de Oro City in the northern part of Mindanao, where the rainfall on January 10, 11, and 13, 2009, exceeded the 99th percentile of daily rainfall records of all January of the city from 1979 to 2017 by almost two times. A similar exceedance was also felt in Hinatuan station over the eastern coast of Mindanao Island on January 15, …


The Effect Of Urbanization On Temperature Indices In The Philippines, John A. Manalo, Jun Matsumoto, Hiroshi G. Takahashi, Marcelino Q. Villafuerte Ii, Lyndon Mark P. Olaguera, Guoyu Ren, Thelma Cinco Jun 2021

The Effect Of Urbanization On Temperature Indices In The Philippines, John A. Manalo, Jun Matsumoto, Hiroshi G. Takahashi, Marcelino Q. Villafuerte Ii, Lyndon Mark P. Olaguera, Guoyu Ren, Thelma Cinco

Physics Faculty Publications

This paper presents a comprehensive analysis of the effect of urbanization on the surface air temperature (SAT) from 1951 to 2018 in the Philippines. The daily minimum temperature (Tmin) and daily maximum temperature (Tmax) records from 34 meteorological stations were used to derive extreme temperature indices. These stations were then classified as urban or rural based on satellite night-lights. The results showed a significant difference in the SAT trends between urban and rural stations, indicative of the effect of urbanization in the country. Larger and more significant warming trends were observed in indices related …


Radiosonde High Altitude Measurements Of Radiation Levels And Cosmic Ray Events, Ayodeji Opeyemi Akinuliola May 2021

Radiosonde High Altitude Measurements Of Radiation Levels And Cosmic Ray Events, Ayodeji Opeyemi Akinuliola

Electronic Theses and Dissertations

Just above us, cosmic rays are hurtling in from space. These fast moving particles crash uncontrollably into molecules in the atmosphere, causing spontaneous decays of these particles. Despite the fact that we are broadly shielded from this radiation on earth, these particles can still disturb humans and electronics alike. Therefore, this research focuses on expanding the use of long-range radio transmitters such as radiosondes to transmit valuable data such as cosmic ray flux, geographical position, atmospheric temperature, pressure, etc. This can improve real-time radiation monitoring for aviation industry crew and passengers working in potentially higher radiation environments. On March 11, …


Measurement Report: Long-Range Transport Patterns Into The Tropical Northwest Pacific During The Camp2ex Aircraft Campaign: Chemical Composition, Size Distributions, And The Impact Of Convection, Miguel Ricardo A. Hilario, Ewan Crosbie, Michael Shook, Jeffrey S. Reid, Maria Obiminda L. Cambaliza, James Bernard Simpas, Luke Ziemba, Joshua P. Digangi, Glenn S. Diskin, Phu Nguyen, F. Joseph Turk, Edward Winstead, Claire E. Robinson, Jian Wang, Jiaoshi Zhang, Yang Wang, Subin Yoon, James Flynn, Sergio L. Alvarez, Ali Behrangi, Armin Sorooshian Mar 2021

Measurement Report: Long-Range Transport Patterns Into The Tropical Northwest Pacific During The Camp2ex Aircraft Campaign: Chemical Composition, Size Distributions, And The Impact Of Convection, Miguel Ricardo A. Hilario, Ewan Crosbie, Michael Shook, Jeffrey S. Reid, Maria Obiminda L. Cambaliza, James Bernard Simpas, Luke Ziemba, Joshua P. Digangi, Glenn S. Diskin, Phu Nguyen, F. Joseph Turk, Edward Winstead, Claire E. Robinson, Jian Wang, Jiaoshi Zhang, Yang Wang, Subin Yoon, James Flynn, Sergio L. Alvarez, Ali Behrangi, Armin Sorooshian

Physics Faculty Publications

The tropical Northwest Pacific (TNWP) is a receptor for pollution sources throughout Asia and is highly susceptible to climate change, making it imperative to understand long-range transport in this complex aerosol-meteorological environment. Measurements from the NASA Cloud, Aerosol, and Monsoon Processes Philippines Experiment (CAMP2Ex; 24 August to 5 October 2019) and back trajectories from the National Oceanic and Atmospheric Administration Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT) were used to examine transport into the TNWP from the Maritime Continent (MC), peninsular Southeast Asia (PSEA), East Asia (EA), and the West Pacific (WP). A mid-campaign monsoon shift on 20 September …


Investigating Ice Nucleation At Negative Pressures Using Molecular Dynamics: A First Order Approximation Of The Dependence Of Ice Nucleation Rate On Pressure, Elise Rosky Jan 2021

Investigating Ice Nucleation At Negative Pressures Using Molecular Dynamics: A First Order Approximation Of The Dependence Of Ice Nucleation Rate On Pressure, Elise Rosky

Dissertations, Master's Theses and Master's Reports

Atmospheric scientists and climate modelers are faced with uncertainty around the process of ice production in clouds. While significant progress has been made in predicting homogeneous and heterogeneous ice nucleation rates as a function of temperature, recent experiments have shown that ice nucleation rates can be enhanced without decreasing temperature, through various mechanical agitations. One hypothesis for these findings is that mechanisms of stretching water and thereby inducing negative pressure in the liquid could lead to an increase in freezing rate. To better understand the viability of this concept, the effect of negative pressure on ice nucleation rates needs to …


Modeling And Numerical Simulations Of The Michigan Tech Convection Cloud Chamber, Subin Thomas Jan 2021

Modeling And Numerical Simulations Of The Michigan Tech Convection Cloud Chamber, Subin Thomas

Dissertations, Master's Theses and Master's Reports

Understanding atmospheric clouds is essential for human progress, ranging from short-term effects such as when and how much it rains to long-term effects such as how much temperatures would rise due to global climate change. Clouds vary globally and seasonally; also they have length scales ranging from a few nanometers to a few kilometers and timescales from a few nanoseconds to a few weeks. Knowledge gaps in aerosol-cloud-turbulence interactions and a lack of sufficient resolution in observations pose a challenge in understanding cloud systems.

Experimental facilities like the Michigan Tech Cloud Chamber can provide a suitable platform for studying aerosol-cloud …


On The Improvements Of Boundary-Layer Representation For High Resolution Weather Forecasting In Costal-Urban Environments, David Melecio-Vazquez Jan 2021

On The Improvements Of Boundary-Layer Representation For High Resolution Weather Forecasting In Costal-Urban Environments, David Melecio-Vazquez

Dissertations and Theses

As large urban centers around the world become more densely populated, the global conversion from natural to man-made land surfaces will only increase. These land-use changes affect the urban surface energy budget which in turn changes the structure of the planetary boundary layer (PBL) above. With current high-performance computing systems, meteorological and built environment information can be better utilized to quantify the anthropogenic effects of these modifications. Although these systems have improved forecasting near-surface weather conditions, a comprehensive approach to represent urban impacts on the PBL is still limited. Improved PBL representation can lead to better weather and climate forecasts, …


Understanding The Effects Of Water Vapor And Temperature On Aerosol Using Novel Measurement Methods, Tyler Jacob Capek Jan 2021

Understanding The Effects Of Water Vapor And Temperature On Aerosol Using Novel Measurement Methods, Tyler Jacob Capek

Dissertations, Master's Theses and Master's Reports

Aerosol and water are inexorably linked, and both are ubiquitous within our atmosphere and required components for cloud formation. Relative humidity (RH), a temperature dependent quantity, can have a significant influence on the size, shape, and ultimately, the optical properties of the aerosol. RH can vary substantially on small spatial and short temporal scales in turbulent conditions due to rapid fluctuations in temperature and water vapor mixing ratio. Accurate assessment of optical enhancements due to an increase in RH is key for determining the particles’ impact on the climate and visibility.

A humidity-controlled cavity attenuated phase-shift albedometer (H-CAPS-PMSSA) …


The Aging And Impacts Of Atmospheric Soot: Closing The Gap Between Experiments And Models, Ogochukwu Yvonne Enekwizu Dec 2020

The Aging And Impacts Of Atmospheric Soot: Closing The Gap Between Experiments And Models, Ogochukwu Yvonne Enekwizu

Dissertations

The main goal of this dissertation is to generate data and parameterizations to accurately represent soot aerosols in atmospheric models. Soot from incomplete combustion of fossil fuels and biomass burning is a major air pollutant and a significant contributor to climate warming. The environmental impacts of soot are strongly dependent on the particle morphology and mixing state, which evolve continuously during atmospheric transport via a process known as aging. To make predictions of soot impacts on the environment, most atmospheric models adopt simplifications of particle structure and mixing state, which lead to substantial uncertainties. Using an experimentally constrained modeling approach, …


Large Global Variations In Measured Airborne Metal Concentrations Driven By Anthropogenic Sources, Jacob Mcneill, Randal V. Martin, Nofel Lagrosas, 35 Co-Authors Dec 2020

Large Global Variations In Measured Airborne Metal Concentrations Driven By Anthropogenic Sources, Jacob Mcneill, Randal V. Martin, Nofel Lagrosas, 35 Co-Authors

SOSE Affiliate: Manila Observatory

Globally consistent measurements of airborne metal concentrations in fine particulate matter (PM2.5) are important for understanding potential health impacts, prioritizing air pollution mitigation strategies, and enabling global chemical transport model development. PM2.5 filter samples (N ~ 800 from 19 locations) collected from a globally distributed surface particulate matter sampling network (SPARTAN) between January 2013 and April 2019 were analyzed for particulate mass and trace metals content. Metal concentrations exhibited pronounced spatial variation, primarily driven by anthropogenic activities. PM2.5 levels of lead, arsenic, chromium, and zinc were significantly enriched at some locations by factors of 100–3000 compared …


Parametric Model Development For Heterogeneous Atmospheric Conditions, Daniel Paul Greenway Dec 2020

Parametric Model Development For Heterogeneous Atmospheric Conditions, Daniel Paul Greenway

Electronic Theses and Dissertations

No abstract provided.


Atmospheric Measurements With Unmanned Aerial Systems (Uas), Marcelo I. Guzman Nov 2020

Atmospheric Measurements With Unmanned Aerial Systems (Uas), Marcelo I. Guzman

Chemistry Faculty Publications

This Special Issue provides the first literature collection focused on the development and implementation of unmanned aircraft systems (UAS) and their integration with sensors for atmospheric measurements on Earth. The research covered in the Special Issue combines chemical, physical, and meteorological measurements performed in field campaigns as well as conceptual and laboratory work. Useful examples for the development of platforms and autonomous systems for environmental studies are provided, which demonstrate how careful the operation of sensors aboard UAS must be to gather information for remote sensing in the atmosphere. The work serves as a key collection of articles to introduce …