Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 19 of 19

Full-Text Articles in Atmospheric Sciences

Possible Overestimation Of Nitrogen Dioxide Outgassing During The Beirut 2020 Explosion, Ashraf Farahat, Nayla El-Kork, Ramesh P. Singh, Feng Jing Dec 2022

Possible Overestimation Of Nitrogen Dioxide Outgassing During The Beirut 2020 Explosion, Ashraf Farahat, Nayla El-Kork, Ramesh P. Singh, Feng Jing

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

On 4 August 2020, a strong explosion occurred near the Beirut seaport, Lebanon and killed more than 200 people and damaged numerous buildings in the vicinity. As Amonium Nitrate (AN) caused the explosion, many studies claimed the release of large amounts of NO2 in the atmosphere may have resulted in a health hazard in Beirut and the vicinity. In order to reasonably evaluate the significance of NO2 amounts released in the atmosphere, it is important to investigate the spatio-temporal distribution of NO2 during and after the blast and compare it to the average day-to-day background emissions from …


Long Term Air Quality Analysis In Reference To Thermal Power Plants Using Satellite Data In Singrauli Region, India, H. K. Romana, Ramesh P. Singh, D. P. Shukla Aug 2020

Long Term Air Quality Analysis In Reference To Thermal Power Plants Using Satellite Data In Singrauli Region, India, H. K. Romana, Ramesh P. Singh, D. P. Shukla

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

The exponentially growing population and related anthropogenic activities have led to modifications in local environment. The change in local environment, evolving pattern of land use, concentrations of greenhouse gases and aerosols alter the energy balance of our climate system. This alteration in climate is leading to pre-mature deaths worldwide. This study analyses the air quality of Singrauli region, Madhya Pradesh, India for the past 15 years. Otherwise known as Urjanchal “the energy capital” of India has been declared as critically polluted by CPCB. The study provides an updated list of thermal power plants in the study area and their emission …


Global Atmospheric Budget Of Acetone: Air-Sea Exchange And The Contribution To Hydroxyl Radicals, Siyuan Wang, Eric C. Apel, Rebecca H. Schwantes, Kelvin H. Bates, Daniel J. Jacob, Emily V. Fischer, Rebecca S. Hornbrook, Alan J. Hills, Louisa K. Emmons, Laura L. Pan, Shawn Honomichl, Simone Tilmes, Jean‐François Lamarque, Mingxi Yang, Christa A. Marandino, E. S. Saltzman, Warren J. De Bruyn, Sohiko Kameyama, Hiroshi Tanimoto, Yuko Omori, Samuel R. Hall, Kirk Ullmann, Thomas B. Ryerson, Chelsea R. Thompson, Jeff Peischl, Bruce C. Daube, Róisín Commane, Kathryn Mckain, Colm Sweeney, Alexander B. Thames, David O. Miller, William H. Brune, Glenn S. Diskin, Joshua P. Digangi, Steven C. Wofsy Jul 2020

Global Atmospheric Budget Of Acetone: Air-Sea Exchange And The Contribution To Hydroxyl Radicals, Siyuan Wang, Eric C. Apel, Rebecca H. Schwantes, Kelvin H. Bates, Daniel J. Jacob, Emily V. Fischer, Rebecca S. Hornbrook, Alan J. Hills, Louisa K. Emmons, Laura L. Pan, Shawn Honomichl, Simone Tilmes, Jean‐François Lamarque, Mingxi Yang, Christa A. Marandino, E. S. Saltzman, Warren J. De Bruyn, Sohiko Kameyama, Hiroshi Tanimoto, Yuko Omori, Samuel R. Hall, Kirk Ullmann, Thomas B. Ryerson, Chelsea R. Thompson, Jeff Peischl, Bruce C. Daube, Róisín Commane, Kathryn Mckain, Colm Sweeney, Alexander B. Thames, David O. Miller, William H. Brune, Glenn S. Diskin, Joshua P. Digangi, Steven C. Wofsy

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Acetone is one of the most abundant oxygenated volatile organic compounds (VOCs) in the atmosphere. The oceans impose a strong control on atmospheric acetone, yet the oceanic fluxes of acetone remain poorly constrained. In this work, the global budget of acetone is evaluated using two global models: CAM‐chem and GEOS‐Chem. CAM‐chem uses an online air‐sea exchange framework to calculate the bidirectional oceanic acetone fluxes, which is coupled to a data‐oriented machine‐learning approach. The machine‐learning algorithm is trained using a global suite of seawater acetone measurements. GEOS‐Chem uses a fixed surface seawater concentration of acetone to calculate the oceanic fluxes. Both …


Synergistic Use Of Remote Sensing And Modeling For Estimating Net Primary Productivity In The Red Sea With Vgpm, Eppley-Vgpm, And Cbpm Models Intercomparison, Wenzhao Li, Surya Prakash Tiwari, Hesham El-Askary, Mohamed Ali Qurban, Vassilis Amiridis, K. P. Manikandan, Michael J. Garay, Olga V. Kalashnikova, Thomas C. Piechota, Daniele C. Struppa May 2020

Synergistic Use Of Remote Sensing And Modeling For Estimating Net Primary Productivity In The Red Sea With Vgpm, Eppley-Vgpm, And Cbpm Models Intercomparison, Wenzhao Li, Surya Prakash Tiwari, Hesham El-Askary, Mohamed Ali Qurban, Vassilis Amiridis, K. P. Manikandan, Michael J. Garay, Olga V. Kalashnikova, Thomas C. Piechota, Daniele C. Struppa

Mathematics, Physics, and Computer Science Faculty Articles and Research

Primary productivity (PP) has been recently investigated using remote sensing-based models over quite limited geographical areas of the Red Sea. This work sheds light on how phytoplankton and primary production would react to the effects of global warming in the extreme environment of the Red Sea and, hence, illuminates how similar regions may behave in the context of climate variability. study focuses on using satellite observations to conduct an intercomparison of three net primary production (NPP) models--the vertically generalized production model (VGPM), the Eppley-VGPM, and the carbon-based production model (CbPM)--produced over the Red Sea domain for the 1998-2018 time period. …


Methanethiol, Dimethyl Sulfide And Acetone Over Biologically Productive Waters In The Southwest Pacific Ocean, Sarah J. Lawson, Cliff S. Law, Mike J. Harvey, Thomas G. Bell, Carolyn F. Walker, Warren J. De Bruyn, Eric S. Saltzman Mar 2020

Methanethiol, Dimethyl Sulfide And Acetone Over Biologically Productive Waters In The Southwest Pacific Ocean, Sarah J. Lawson, Cliff S. Law, Mike J. Harvey, Thomas G. Bell, Carolyn F. Walker, Warren J. De Bruyn, Eric S. Saltzman

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Atmospheric methanethiol (MeSHa), dimethyl sulfide (DMSa) and acetone (acetonea) were measured over biologically productive frontal waters in the remote southwest Pacific Ocean in summertime 2012 during the Surface Ocean Aerosol Production (SOAP) voyage. MeSHa mixing ratios varied from below the detection limit (< 10 ppt) up to 65 ppt and were 3 %–36 % of parallel DMSa mixing ratios. MeSHa and DMSa were correlated over the voyage (R2=0.3, slope = 0.07) with a stronger correlation over a coccolithophore-dominated phytoplankton bloom (R2=0.5, slope 0.13). The diurnal cycle for MeSHa shows similar behaviour to DMSa with mixing ratios …


Air/Sea Transfer Of Highly Soluble Gases Over Coastal Waters, J. G. Porter, Warren J. De Bruyn, S. D. Miller, E. S. Saltzman Jan 2020

Air/Sea Transfer Of Highly Soluble Gases Over Coastal Waters, J. G. Porter, Warren J. De Bruyn, S. D. Miller, E. S. Saltzman

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

The deposition of soluble trace gases to the sea surface is not well studied due to a lack of flux measurements over the ocean. Here we report simultaneous air/sea eddy covariance flux measurements of water vapor, sulfur dioxide (SO2), and momentum from a coastal North Atlantic pier. Gas transfer velocities were on average about 20% lower for SO2 than for H2O. This difference is attributed to the difference in molecular diffusivity between the two molecules (D SO 2/D H 2O = 0.5), in reasonable agreement with bulk parameterizations in air/sea gas …


Global Sinusoidal Seasonality In Precipitation Isotopes, Scott T. Allen, Scott Jasechko, Wouter R. Berghuijs, Jeffrey M. Welker, Gregory R. Goldsmith, James W. Kirchner Aug 2019

Global Sinusoidal Seasonality In Precipitation Isotopes, Scott T. Allen, Scott Jasechko, Wouter R. Berghuijs, Jeffrey M. Welker, Gregory R. Goldsmith, James W. Kirchner

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Quantifying seasonal variations in precipitation δ2H and δ18O is important for many stable isotope applications, including inferring plant water sources and streamflow ages. Our objective is to develop a data product that concisely quantifies the seasonality of stable isotope ratios in precipitation. We fit sine curves defined by amplitude, phase, and offset parameters to quantify annual precipitation isotope cycles at 653 meteorological stations on all seven continents. At most of these stations, including in tropical and subtropical regions, sine curves can represent the seasonal cycles in precipitation isotopes. Additionally, the amplitude, phase, and offset parameters of …


Eddy Flux Measurements Of Sulfur Dioxide Deposition To The Sea Surface, Jack G. Porter, Warren J. De Bruyn, Eric S. Saltzman Oct 2018

Eddy Flux Measurements Of Sulfur Dioxide Deposition To The Sea Surface, Jack G. Porter, Warren J. De Bruyn, Eric S. Saltzman

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Deposition to the sea surface is a major atmospheric loss pathway for many important trace gases, such as sulfur dioxide (SO2). The air–sea transfer of SO2 is controlled entirely on the atmospheric side of the air–sea interface due to high effective solubility and other physical– chemical properties. There have been few direct field measurements of such fluxes due to the challenges associated with making fast-response measurements of highly soluble trace gases at very low ambient levels. In this study, we report direct eddy covariance air–sea flux measurements of SO2, sensible heat, water vapor, and momentum. The measurements were made over …


Predicting Spatial Patterns In Precipitation Isotope (Δ2h And Δ18o) Seasonality Using Sinusoidal Isoscapes, Scott T. Allen, James W. Kirchner, Gregory R. Goldsmith May 2018

Predicting Spatial Patterns In Precipitation Isotope (Δ2h And Δ18o) Seasonality Using Sinusoidal Isoscapes, Scott T. Allen, James W. Kirchner, Gregory R. Goldsmith

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Understanding how precipitation isotopes vary spatially and temporally is important for tracer applications. We tested how well month‐to‐month variations in precipitation δ18O and δ2H were captured by sinusoidal cycles, and how well spatial variations in these seasonal cycles could be predicted, across Switzerland. Sine functions representing seasonal cycles in precipitation isotopes explained between 47% and 94% of the variance in monthly δ18O and δ2H values at each monitoring site. A significant sinusoidal cycle was also observed in line‐conditioned excess. We interpolated the amplitudes, phases, and offsets of these sine functions across the landscape, using multiple linear …


No Evidence For Trace Metal Limitation On Anaerobic Carbon Mineralization In Three Peatland Soils, Jason K. Keller, Jillian Wade Nov 2017

No Evidence For Trace Metal Limitation On Anaerobic Carbon Mineralization In Three Peatland Soils, Jason K. Keller, Jillian Wade

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Peatlands store roughly one-third of the terrestrial soil carbon and release the potent greenhouse gas methane (CH4) to the atmosphere, making these wetlands among the most important ecosystems in the global carbon cycle. Despite their importance, the controls of anaerobic decomposition of organic matter to carbon dioxide (CO2) and CH4 within peatlands are not well understood. It is known, however, that the enzymes responsible for CH4 production require cobalt, iron and nickel, and there is a growing appreciation for the potential role of trace metal limitation in anaerobic decomposition. To explore the possibility of …


Estimation Of Bubble-Mediated Air–Sea Gas Exchange From Concurrent Dms And Co2 Transfer Velocities At Intermediate–High Wind Speeds, Thomas G. Bell, Sebastian Landwehr, Scott D. Miller, Warren J. De Bruyn, Adrian H. Callaghan, Brian Scanlon, Brian Ward, Mingxi Yang, Eric S. Saltzman Jul 2017

Estimation Of Bubble-Mediated Air–Sea Gas Exchange From Concurrent Dms And Co2 Transfer Velocities At Intermediate–High Wind Speeds, Thomas G. Bell, Sebastian Landwehr, Scott D. Miller, Warren J. De Bruyn, Adrian H. Callaghan, Brian Scanlon, Brian Ward, Mingxi Yang, Eric S. Saltzman

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Simultaneous air–sea fluxes and concentration differences of dimethylsulfide (DMS) and carbon dioxide (CO2/ were measured during a summertime North Atlantic cruise in 2011. This data set reveals significant differences between the gas transfer velocities of these two gases (1kw/ over a range of wind speeds up to 21ms􀀀1. These differences occur at and above the approximate wind speed threshold when waves begin breaking. Whitecap fraction (a proxy for bubbles) was also measured and has a positive relationship with 1kw, consistent with enhanced bubble-mediated transfer of the less soluble CO2 relative to that of the more soluble DMS. However, the correlation …


Air-Sea Dimethylsulfide (Dms) Gas Transfer In The North Atlantic: Evidence For Limited Interfacial Gas Exchange At High Wind Speed, T. G. Bell, Warren J. De Bruyn, S. D. Miller, B. Ward, K. Christensen, E. S. Saltzman Jan 2013

Air-Sea Dimethylsulfide (Dms) Gas Transfer In The North Atlantic: Evidence For Limited Interfacial Gas Exchange At High Wind Speed, T. G. Bell, Warren J. De Bruyn, S. D. Miller, B. Ward, K. Christensen, E. S. Saltzman

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Shipboard measurements of eddy covariance dimethylsulfide (DMS) air-sea fluxes and seawater concentration were carried out in the North Atlantic bloom region in June/July 2011. Gas transfer coefficients (k(660)) show a linear dependence on mean horizontal wind speed at wind speeds up to 11 m s(-1). At higher wind speeds the relationship between k(660) and wind speed weakens. At high winds, measured DMS fluxes were lower than predicted based on the linear relationship between wind speed and interfacial stress extrapolated from low to intermediate wind speeds. In contrast, the transfer coefficient for sensible heat did not exhibit this effect. The apparent …


Post-Coring Entrapment Of Modern Air In Some Shallow Ice Cores Collected Near The Firn-Ice Transition: Evidence From Cfc-12 Measurements In Antarctic Firn Air And Ice Cores, Murat Aydin, S. A. Montzka, M. O. Battle, M. B. Williams, Warren J. De Bruyn, J. H. Butler, K. R. Verhulst, C. Tatum, B. K. Gun, D. A. Plotkin, B. D. Hall, Eric S. Saltzman Jan 2010

Post-Coring Entrapment Of Modern Air In Some Shallow Ice Cores Collected Near The Firn-Ice Transition: Evidence From Cfc-12 Measurements In Antarctic Firn Air And Ice Cores, Murat Aydin, S. A. Montzka, M. O. Battle, M. B. Williams, Warren J. De Bruyn, J. H. Butler, K. R. Verhulst, C. Tatum, B. K. Gun, D. A. Plotkin, B. D. Hall, Eric S. Saltzman

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

In this study, we report measurements of CFC-12 (CCl2F2) in firn air and in air extracted from shallow ice cores from three Antarctic sites. The firn air data are consistent with the known atmospheric history of CFC-12. In contrast, some of the ice core samples collected near the firn-ice transition exhibit anomalously high CFC-12 levels. Together, the ice core and firn air data provide evidence for the presence of modern air entrapped in the shallow ice core samples that likely contained open pores at the time of collection. We propose that this is due to closure of the open pores …


Open Ocean Dms Air/Sea Fluxes Over The Eastern South Pacific Ocean, C. A. Marandino, Warren J. De Bruyn, S. D. Miller, E. S. Saltzman Jan 2009

Open Ocean Dms Air/Sea Fluxes Over The Eastern South Pacific Ocean, C. A. Marandino, Warren J. De Bruyn, S. D. Miller, E. S. Saltzman

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Air/sea fluxes of dimethylsulfide (DMS) were measured by eddy correlation over the Eastern South Pacific Ocean during January 2006. The cruise track extended from Manzanillo, Mexico, along 110 degrees W, to Punta Arenas, Chile. Bulk air and surface ocean DMS levels were also measured and gas transfer coefficients (k(DMS)) were computed. Air and seawater DMS measurements were made using chemical ionization mass spectrometry (API-CIMS) and a gas/liquid membrane equilibrator. Mean surface seawater DMS concentrations were 3.8 +/- 2.2 nM and atmospheric mixing ratios were 340 +/- 370 ppt. The air/sea flux of DMS was uniformly out of the ocean, with …


A Chemical Ionization Mass Spectrometer For Continuous Underway Shipboard Analysis Of Dimethylsulfide In Near-Surface Seawater, Eric S. Saltzman, Warren J. De Bruyn, M. J. Lawler, Christa Marandino, C. A. Mccormick Jan 2009

A Chemical Ionization Mass Spectrometer For Continuous Underway Shipboard Analysis Of Dimethylsulfide In Near-Surface Seawater, Eric S. Saltzman, Warren J. De Bruyn, M. J. Lawler, Christa Marandino, C. A. Mccormick

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

A compact, low-cost atmospheric pressure, chemical ionization mass spectrometer ('mini-CIMS') has been developed for continuous underway shipboard measurements of dimethylsulfide (DMS) in seawater. The instrument was used to analyze DMS in air equilibrated with flowing seawater across a porous Teflon membrane equilibrator. The equilibrated gas stream was diluted with air containing an isotopically-labeled internal standard. DMS is ionized at atmospheric pressure via proton transfer from water vapor, then declustered, mass filtered via quadrupole mass spectrometry, and detected with an electron multiplier. The instrument described here is based on a low-cost residual gas analyzer (Stanford Research Systems), which has been modified …


Dms Air/Sea Flux And Gas Transfer Coefficients From The North Atlantic Summertime Coccolithophore Bloom, Christa Marandino, Warren J. De Bruyn, Scott Miller, Eric S. Saltzman Jan 2008

Dms Air/Sea Flux And Gas Transfer Coefficients From The North Atlantic Summertime Coccolithophore Bloom, Christa Marandino, Warren J. De Bruyn, Scott Miller, Eric S. Saltzman

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Dimethylsulfide (DMS) atmospheric and oceanic concentrations and eddy covariance air/sea fluxes were measured over the N. Atlantic Ocean during July 2007 from Iceland to Woods Hole, MA, USA. Seawater DMS levels north of 55 degrees N ranged from 3 to 17 nM, with variability related to the satellite-derived distributions of coccoliths and to a lesser extent, chlorophyll. For the most intense bloom region southwest of Iceland, DMS air/sea fluxes were as high as 300 mu mol m(-2) d(-1), larger than current model estimates. The observations imply that gas exchange coefficients in this region are significantly greater than those estimated using …


Eddy Correlation Measurements Of The Air/Sea Flux Of Dimethylsulfide Over The North Pacific Ocean, Christa A. Marandino, Warren J. De Bruyn, Scott D. Miller, Eric S. Saltzman Jan 2007

Eddy Correlation Measurements Of The Air/Sea Flux Of Dimethylsulfide Over The North Pacific Ocean, Christa A. Marandino, Warren J. De Bruyn, Scott D. Miller, Eric S. Saltzman

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Shipboard measurements of air/sea fluxes and sea surface concentrations of dimethylsulfide (DMS) were made over the tropical and midlatitude North Pacific Ocean. Atmospheric pressure chemical ionization mass spectrometry was used to measure DMS levels in ambient air and in air equilibrated with surface seawater drawn from a depth of 5 m. Air/sea fluxes were obtained using eddy covariance. Corrections and uncertainties involved in the calculation of fluxes from shipboard data are discussed. The surface ocean DMS concentrations measured during this study ranged from 1 to 10 nM, and atmospheric mixing ratios ranged from 20 to 1000 ppt. Air/sea fluxes ranged …


Oceanic Uptake And The Global Atmospheric Acetone Budget, Christa Marandino, Warren J. De Bruyn, Scott Miller, M. J. Prather, Eric S. Saltzman Jan 2005

Oceanic Uptake And The Global Atmospheric Acetone Budget, Christa Marandino, Warren J. De Bruyn, Scott Miller, M. J. Prather, Eric S. Saltzman

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

In this study, direct measurements of the air/ sea flux of acetone were made over the North Pacific Ocean. The results demonstrate that the net flux of acetone is into, rather than out of the oceans. The extrapolated global ocean uptake of 48 Tg yr(-1) requires a major revision of the atmospheric acetone budget. This result is consistent with a recent reevaluation of acetone photodissociation quantum yields.


Atmospheric Variability Of Methyl Chloride During The Last 300 Years From An Antarctic Ice Core And Firn Air, M. Aydin, Eric S. Saltzman, Warren J. De Bruyn, S. A. Montzka, J. H. Butler, M. Battle Jan 2004

Atmospheric Variability Of Methyl Chloride During The Last 300 Years From An Antarctic Ice Core And Firn Air, M. Aydin, Eric S. Saltzman, Warren J. De Bruyn, S. A. Montzka, J. H. Butler, M. Battle

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Measurements of methyl chloride (CH3Cl) in Antarctic polar ice and firn air are used to describe the variability of atmospheric CH3Cl during the past 300 years. Firn air results from South Pole and Siple Dome suggest that the atmospheric abundance of CH3Cl increased by about 10% in the 50 years prior to 1990. Ice core measurements from Siple Dome provide evidence for a cyclic natural variability on the order of 10%, with a period of about 110 years in phase with the 20th century rise inferred from firn air. Thus, the CH3Cl increase measured in firn air may largely be …