Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Atmospheric Sciences

The Aging And Impacts Of Atmospheric Soot: Closing The Gap Between Experiments And Models, Ogochukwu Yvonne Enekwizu Dec 2020

The Aging And Impacts Of Atmospheric Soot: Closing The Gap Between Experiments And Models, Ogochukwu Yvonne Enekwizu

Dissertations

The main goal of this dissertation is to generate data and parameterizations to accurately represent soot aerosols in atmospheric models. Soot from incomplete combustion of fossil fuels and biomass burning is a major air pollutant and a significant contributor to climate warming. The environmental impacts of soot are strongly dependent on the particle morphology and mixing state, which evolve continuously during atmospheric transport via a process known as aging. To make predictions of soot impacts on the environment, most atmospheric models adopt simplifications of particle structure and mixing state, which lead to substantial uncertainties. Using an experimentally constrained modeling approach, …


Accumulation Of Polar Vorticity On Giant Planets: Towards A Three-Dimensional Theory, Shawn R. Brueshaber Aug 2020

Accumulation Of Polar Vorticity On Giant Planets: Towards A Three-Dimensional Theory, Shawn R. Brueshaber

Dissertations

My research investigates the polar atmospheric dynamics of the giant planets: Jupiter and Saturn (gas giants), and Uranus and Neptune (ice giants). I conduct my research modifying and applying the Explicit Planetary Isentropic Coordinate global circulation code to model the polar regions of the four giant planets.

The motivation behind my research is to uncover the reason why giant planet polar atmospheric dynamics differ. Jupiter features multiple circumpolar cyclones arranged in geometrical configurations, whereas Saturn features a single pole-centered cyclone. Uranus and Neptune also appear to have single pole-centered cyclones, albeit, larger than those on Saturn. …


A Novel Approach For Identifying Cloud Clusters Developing Into Tropical Cyclones, Chaunte' W. Lacewell Jan 2015

A Novel Approach For Identifying Cloud Clusters Developing Into Tropical Cyclones, Chaunte' W. Lacewell

Dissertations

Providing advance notice of rare events, such as a cloud cluster (CC) developing into a tropical cyclone (TC), is of great importance. Having advance warning of such rare events possibly can help avoid or reduce the risk of damages and allow emergency responders and the affected community enough time to respond appropriately. Considering this, forecasters need better data mining and data driven techniques to identify developing CCs. Prior studies have attempted to predict the formation of TCs using numerical weather prediction models as well as satellite and radar data. However, refined observational data and forecasting techniques are not always available …


Tropical Cyclone Intensity Estimation Using Temporal And Spatial Features From Satellite Data, Gholamreza Fetanat Haghighi Jan 2013

Tropical Cyclone Intensity Estimation Using Temporal And Spatial Features From Satellite Data, Gholamreza Fetanat Haghighi

Dissertations

Accurate intensity estimation of tropical cyclones (TC) is an important topic of research due to its economic impact and public safety concerns. An accurate measure of the current wind strength is necessary to accurately predict TC intensity. We have developed and tested automated method to estimate TC intensity based on the existing historical satellite images alone. The Hurricane Satellite data (HURSAT-B1) is used to develop the algorithm, which focuses on the North Atlantic from 1978-2009. The algorithm is trained and validated using aircraft reconnaissance-based data. Here, the data is restricted to include only fixes that are over water and are …