Open Access. Powered by Scholars. Published by Universities.®

Other Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Other Mathematics

(R2054) Convergence Of Lagrange-Hermite Interpolation Using Non-Uniform Nodes On The Unit Circle, Swarnima Bahadur, Sameera Iqram, Varun . Dec 2023

(R2054) Convergence Of Lagrange-Hermite Interpolation Using Non-Uniform Nodes On The Unit Circle, Swarnima Bahadur, Sameera Iqram, Varun .

Applications and Applied Mathematics: An International Journal (AAM)

In this research article, we brought into consideration the set of non-uniformly distributed nodes on the unit circle to investigate a Lagrange-Hermite interpolation problem. These nodes are obtained by projecting vertically the zeros of Jacobi polynomial onto the unit circle along with the boundary points of the unit circle on the real line. Explicitly representing the interpolatory polynomial as well as establishment of convergence theorem are the key highlights of this manuscript. The result proved are of interest to approximation theory.


(R1958) On Deferred Statistical Convergence Of Fuzzy Variables, Ömer Kişi, Mehmet Gürdal, Ekrem Savaş Dec 2022

(R1958) On Deferred Statistical Convergence Of Fuzzy Variables, Ömer Kişi, Mehmet Gürdal, Ekrem Savaş

Applications and Applied Mathematics: An International Journal (AAM)

In this paper, within framework credibility theory, we examine several notions of convergence and statistical convergence of fuzzy variable sequences. The convergence of fuzzy variable sequences such as the notion of convergence in credibility, convergence in distribution, convergence in mean, and convergence uniformly virtually certainly via postponed Cesàro mean and a regular matrix are researched using fuzzy variables. We investigate the connections between these concepts. Significant results on deferred statistical convergence for fuzzy variable sequences are thoroughly investigated.


(R1886) Effect Of Aggregation Function In Moma-Plus Method For Obtaining Pareto Optimal Solutions, Alexandre Som, Abdoulaye Compaoré, Kounhinir Somé, Blaise Somé Dec 2022

(R1886) Effect Of Aggregation Function In Moma-Plus Method For Obtaining Pareto Optimal Solutions, Alexandre Som, Abdoulaye Compaoré, Kounhinir Somé, Blaise Somé

Applications and Applied Mathematics: An International Journal (AAM)

In this work, we have proposed some variants of MOMA-Plus method that we have numerically tested for the resolution of nonlinear multiobjective optimization problems. This MOMA-Plus method and variants differ from each other by the choice of aggregation functions in order to reduce the number of objective functions. The theoretical results allowing us to use these aggregation functions to transform multiobjective optimization problems into single objective optimization problems are proved by two theorems. This study has highlighted the advantages of each aggregation function according to the type of Pareto front of the optimization problem. Six benchmarks test problems have been …


(R1888) On The Mackey-Glass Model With A Piecewise Constant Argument, Mehtap Lafci Büyükkahraman Dec 2022

(R1888) On The Mackey-Glass Model With A Piecewise Constant Argument, Mehtap Lafci Büyükkahraman

Applications and Applied Mathematics: An International Journal (AAM)

In this paper, we deal with the Mackey-Glass model with piecewise constant argument. Because the corresponding difference equation is the difference solution of the equation, the difference equation can clearly predict the dynamic behavior of the equation. So, we look at how the difference equation behaves.We study the asymptotic stability of the equilibrium point of the difference equation and it is obtained that this point is a repeller under some conditions. Also, it is shown that every oscillatory solution of the difference equation has semi-cycles of length at least two, and every oscillatory solution of the difference equation is attracted …


Performance In Calculus Ii For Students In Clear Calculus: A Causal Comparative Study, Ty Mckinney, Rebecca Dibbs Jan 2021

Performance In Calculus Ii For Students In Clear Calculus: A Causal Comparative Study, Ty Mckinney, Rebecca Dibbs

Pursue: Undergraduate Research Journal

Calculus is one of the greatest intellectual achievements of the world and is the main gateway for students that are heading into the fields that will power the economy of the 21st century. However, over 25% of students fail U.S. calculus courses each year and end up changing majors. It is important for educators and researchers to try to improve student success and find ways to increase STEM major retention. The purpose of this study was to compare the performance between students that are in traditional and non-traditional calculus II courses based on their preparation in either traditional or non-traditional …


An Ishikawa-Type Iterative Algorithm For Solving A Generalized Variational Inclusion Problem Involving Difference Of Monotone Operators, Mohd Ishtyak, Rais Ahmad Jun 2018

An Ishikawa-Type Iterative Algorithm For Solving A Generalized Variational Inclusion Problem Involving Difference Of Monotone Operators, Mohd Ishtyak, Rais Ahmad

Applications and Applied Mathematics: An International Journal (AAM)

In this paper, we study a generalized variational inclusion problem involving difference of monotone operators in Hilbert spaces. We established equivalence between the generalized variational inclusion problem and a fixed point problem. We establish an Ishikawa type iterative algorithm for solving a generalized variational inclusion problem involving difference of monotone operators, which is more general than Mann-type iterative algorithm. An existence result as well as a convergence result are proved separately. The problem of this paper is more general than many existing problems in the literature. Several special cases of generalized variational inclusion problem involving difference of monotone operators are …


In Honor And Memory Of Professor Lajos Takács, Aliakbar M. Haghighi, Sri G. Mohanty Dec 2015

In Honor And Memory Of Professor Lajos Takács, Aliakbar M. Haghighi, Sri G. Mohanty

Applications and Applied Mathematics: An International Journal (AAM)

This issue of AAM is dedicated to honoring and remembering Professor Lajos Takács. While wrapping up the manuscript of my book (co-authored by Dr. Dimitar Mishev): Delayed and Network Queues, I went back to celebrate his 1962 book, Introduction to the Theory of Queues, where he gives an example illustrating a waiting time paradox, where the waiting time of a passenger waiting for a bus at a bus stop is infinite, while, in reality, he will wait a finite unit of time before a bus arrive. I sent Professor Takács an e-mail on December 4, 2015, inquiring if he had …


On The Numerical Solution Of Linear Fredholm-Volterra İntegro Differential Difference Equations With Piecewise İntervals, Mustafa Gülsu, Yalçın Öztürk Dec 2012

On The Numerical Solution Of Linear Fredholm-Volterra İntegro Differential Difference Equations With Piecewise İntervals, Mustafa Gülsu, Yalçın Öztürk

Applications and Applied Mathematics: An International Journal (AAM)

The numerical solution of a mixed linear integro delay differential-difference equation with piecewise interval is presented using the Chebyshev collocation method. The aim of this article is to present an efficient numerical procedure for solving a mixed linear integro delay differential difference equations. Our method depends mainly on a Chebyshev expansion approach. This method transforms a mixed linear integro delay differential-difference equations and the given conditions into a matrix equation which corresponds to a system of linear algebraic equation. The reliability and efficiency of the proposed scheme are demonstrated by some numerical experiments and performed on the computer algebraic system …


Approximate Analytical Solutions For Fractional Space- And Time- Partial Differential Equations Using Homotopy Analysis Method, Subir, Das, R. Kumar, P. K. Gupta, Hossein Jafari Dec 2010

Approximate Analytical Solutions For Fractional Space- And Time- Partial Differential Equations Using Homotopy Analysis Method, Subir, Das, R. Kumar, P. K. Gupta, Hossein Jafari

Applications and Applied Mathematics: An International Journal (AAM)

This article presents the approximate analytical solutions of first order linear partial differential equations (PDEs) with fractional time- and space- derivatives. With the aid of initial values, the explicit solutions of the equations are solved making use of reliable algorithm like homotopy analysis method (HAM). The speed of convergence of the method is based on a rapidly convergent series with easily computable components. The fractional derivatives are described in Caputo sense. Numerical results show that the HAM is easy to implement and accurate when applied to space- time- fractional PDEs.


Wavelet Transform Of Fractional Integrals For Integrable Boehmians, Deshna Loonker, P. K. Banerji, S. L. Kalla Jun 2010

Wavelet Transform Of Fractional Integrals For Integrable Boehmians, Deshna Loonker, P. K. Banerji, S. L. Kalla

Applications and Applied Mathematics: An International Journal (AAM)

The present paper deals with the wavelet transform of fractional integral operator (the Riemann- Liouville operators) on Boehmian spaces. By virtue of the existing relation between the wavelet transform and the Fourier transform, we obtained integrable Boehmians defined on the Boehmian space for the wavelet transform of fractional integrals.


Analytical Solution Of Time-Fractional Advection Dispersion Equation, Tariq O. Salim, Ahmad El-Kahlout Jun 2009

Analytical Solution Of Time-Fractional Advection Dispersion Equation, Tariq O. Salim, Ahmad El-Kahlout

Applications and Applied Mathematics: An International Journal (AAM)

In this paper, we get exact solution of the time-fractional advection-dispersion equation with reaction term, where the Caputo fractional derivative is considered of order α ϵ (0,2]. The solution is achieved by using a function transform, Fourier and Laplace transforms to get the formulas of the fundamental solution, which are expressed explicitly in terms of Fox’s H-function by making use of the relationship between Fourier and Mellin transforms. As special cases the exact solutions of time-fractional diffusion and wave equations are also obtained, and the solutions of the integer order equations are mentioned.