Open Access. Powered by Scholars. Published by Universities.®

Other Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Other Mathematics

Field Control Of The Surface Electroclinic Effect In Liquid Crystal Displays, Dana Hipolite Aug 2013

Field Control Of The Surface Electroclinic Effect In Liquid Crystal Displays, Dana Hipolite

Physics

Liquid crystals (LCs) are a fascinating class of materials exhibiting a range of phases intermediate between liquid and crystalline. Smectic LCs consist of elongated molecules arranged in a periodic stack (along z) of liquid like layers. In the smectic-A (Sm-A) phase, the average molecular long axis (director) points along z. In the smectic-C (Sm-C) phase, it is tilted relative to z, thus picking out a special direction within the layers. Typically, the Sm-A* to Sm- C* transition will occur as temperature is decreased. In chiral smectics (Sm-*A or Sm-C*) it is possible to induce director titling (i.e. the Sm-C* phase) …


Generalized Finite-Difference Time-Domain Schemes For Solving Nonlinear Schrödinger Equations, Frederick Ira Moxley Iii Jul 2013

Generalized Finite-Difference Time-Domain Schemes For Solving Nonlinear Schrödinger Equations, Frederick Ira Moxley Iii

Doctoral Dissertations

The nonlinear Schrödinger equation (NLSE) is one of the most widely applicable equations in physical science, and characterizes nonlinear dispersive waves, optics, water waves, and the dynamics of molecules. The NLSE satisfies many mathematical conservation laws. Moreover, due to the nonlinearity, the NLSE often requires a numerical solution, which also satisfies the conservation laws. Some of the more popular numerical methods for solving the NLSE include the finite difference, finite element, and spectral methods such as the pseudospectral, split-step with Fourier transform, and integrating factor coupled with a Fourier transform. With regard to the finite difference and finite element methods, …


Hilbert Space Theory And Applications In Basic Quantum Mechanics, Matthew Gagne Jun 2013

Hilbert Space Theory And Applications In Basic Quantum Mechanics, Matthew Gagne

Mathematics

We explore the basic mathematical physics of quantum mechanics. Our primary focus will be on Hilbert space theory and applications as well as the theory of linear operators on Hilbert space. We show how Hermitian operators are used to represent quantum observables and investigate the spectrum of various linear operators. We discuss deviation and uncertainty and briefly suggest how symmetry and representations are involved in quantum theory.


Mathematical Aspects Of Heisenberg Uncertainty Principle Within Local Fractional Fourier Analysis, Yang Xiaojun May 2013

Mathematical Aspects Of Heisenberg Uncertainty Principle Within Local Fractional Fourier Analysis, Yang Xiaojun

Xiao-Jun Yang

In this paper, we discuss the mathematical aspects of the Heisenberg uncertainty principle within local fractional Fourier analysis. The Schrödinger equation and Heisenberg uncertainty principles are structured within local fractional operators.


Cantor-Type Cylindrical-Coordinate Method For Differential Equations With Local Fractional Derivatives, Xiao-Jun Yang Apr 2013

Cantor-Type Cylindrical-Coordinate Method For Differential Equations With Local Fractional Derivatives, Xiao-Jun Yang

Xiao-Jun Yang

In this Letter, we propose to use the Cantor-type cylindrical-coordinate method in order to investigate a family of local fractional differential operators on Cantor sets. Some testing examples are given to illustrate the capability of the proposed method for the heat-conduction equation on a Cantor set and the damped wave equation in fractal strings. It is seen to be a powerful tool to convert differential equations on Cantor sets from Cantorian-coordinate systems to Cantor-type cylindrical-coordinate systems.


A Cauchy Problem For Some Local Fractional Abstract Differential Equation With Fractal Conditions, Yang Xiaojun, Zhong Weiping, Gao Feng Jan 2013

A Cauchy Problem For Some Local Fractional Abstract Differential Equation With Fractal Conditions, Yang Xiaojun, Zhong Weiping, Gao Feng

Xiao-Jun Yang

Fractional calculus is an important method for mathematics and engineering [1-24]. In this paper, we review the existence and uniqueness of solutions to the Cauchy problem for the local fractional differential equation with fractal conditions \[ D^\alpha x\left( t \right)=f\left( {t,x\left( t \right)} \right),t\in \left[ {0,T} \right], x\left( {t_0 } \right)=x_0 , \] where $0<\alpha \le 1$ in a generalized Banach space. We use some new tools from Local Fractional Functional Analysis [25, 26] to obtain the results.


Mechaniczny Rozdział Faz Proj., Wojciech M. Budzianowski Jan 2013

Mechaniczny Rozdział Faz Proj., Wojciech M. Budzianowski

Wojciech Budzianowski

No abstract provided.


Challenges And Prospects Of Processes Utilising Carbonic Anhydrase For Co2 Separation, Patrycja Szeligiewicz, Wojciech M. Budzianowski Jan 2013

Challenges And Prospects Of Processes Utilising Carbonic Anhydrase For Co2 Separation, Patrycja Szeligiewicz, Wojciech M. Budzianowski

Wojciech Budzianowski

This article provides an analysis of processes for separation CO2 by using carbonic anhydrase enzyme with particular emphasis on reactive-membrane solutions. Three available processes are characterised. Main challenges and prospects are given. It is found that in view of numerous challenges practical applications of these processes will be difficult in near future. Further research is therefore needed for improving existing processes through finding methods for eliminating their main drawbacks such as short lifetime of carbonic anhydrase or low resistance of reactive membrane systems to impurities contained in flue gases from power plants.


Fuzzy Neutrosophic Models For Social Scientists, Florentin Smarandache, W.B. Vasantha Kandasamy Jan 2013

Fuzzy Neutrosophic Models For Social Scientists, Florentin Smarandache, W.B. Vasantha Kandasamy

Branch Mathematics and Statistics Faculty and Staff Publications

In this book, authors give the notion of different neutrosophic models like, neutrosophic cognitive maps (NCMs), neutrosophic relational maps (NEMs), neutrosophic relational equations (NREs), neutrosophic bidirectional associative memories (NBAMs) and neutrosophic associative memories (NAMs) for socio scientists. This book has six chapters. The first chapter introduces the basic concepts of neutrosophic numbers and notions about neutrosophic graphs which are essential to construct these neutrosophic models. In chapter two we describe the concept of neutrosophic matrices and the essential operations related with them which are used in the study and working of these neutrosophic models. However the reader must be familiar …


Invisibility: A Mathematical Perspective, Austin G. Gomez Jan 2013

Invisibility: A Mathematical Perspective, Austin G. Gomez

CMC Senior Theses

The concept of rendering an object invisible, once considered unfathomable, can now be deemed achievable using artificial metamaterials. The ability for these advanced structures to refract waves in the negative direction has sparked creativity for future applications. Manipulating electromagnetic waves of all frequencies around an object requires precise and unique parameters, which are calculated from various mathemat- ical laws and equations. We explore the possible interpretations of these parameters and how they are implemented towards the construction of a suitable metamaterial. If carried out correctly, the wave will exit the metamaterial exhibiting the same behavior as when it had entered. …


Computer Programming To Advance Gravitational Lensing, Alex Roche Jan 2013

Computer Programming To Advance Gravitational Lensing, Alex Roche

Undergraduate Review

The purpose of this research was to create a computer code that would numerically test a Poisson equation relating the mass distribution of a lens galaxy cluster to weak gravitational shear. Einstein’s theory of general relativity predicts that space-time is bent by massive objects, and in weak gravitational lensing, galaxy clusters act as lenses. The observable result is that galaxies far behind the gravitational lens will appear slightly more elliptical than they actually are. The ellipticity of the background galaxies is quantifiable and is directly related to the weak gravitational shear, and the shear is used to determine the mass …


Determination Of Kinetic Parameters From The Thermogravimetric Data Set Of Biomass Samples, Karol Postawa, Wojciech M. Budzianowski Dec 2012

Determination Of Kinetic Parameters From The Thermogravimetric Data Set Of Biomass Samples, Karol Postawa, Wojciech M. Budzianowski

Wojciech Budzianowski

This article describes methods of the determination of kinetic parameters from the thermogravimetric data set of biomass samples. It presents the methodology of the research, description of the needed equipment, and the method of analysis of thermogravimetric data. It describes both methodology of obtaining quantitative data such as kinetic parameters as well as of obtaining qualitative data like the composition of biomass. The study is focused mainly on plant biomass because it is easy in harvesting and preparation. Methodology is shown on the sample containing corn stover which is subsequently pyrolysed. The investigated sample show the kinetic of first order …