Open Access. Powered by Scholars. Published by Universities.®

Algebra Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Algebra

Representation Theory And Its Applications In Physics, Max Varverakis Jun 2024

Representation Theory And Its Applications In Physics, Max Varverakis

Master's Theses

Representation theory, which encodes the elements of a group as linear operators on a vector space, has far-reaching implications in physics. Fundamental results in quantum physics emerge directly from the representations describing physical symmetries. We first examine the connections between specific representations and the principles of quantum mechanics. Then, we shift our focus to the braid group, which describes the algebraic structure of braids. We apply representations of the braid group to physical systems in order to investigate quasiparticles known as anyons. Finally, we obtain governing equations of anyonic systems to highlight the differences between braiding statistics and conventional Bose-Einstein/Fermi-Dirac …


Spacetime Geometry Of Acoustics And Electromagnetism, Lucas Burns, Tatsuya Daniel, Stephon Alexander, Justin Dressel Feb 2024

Spacetime Geometry Of Acoustics And Electromagnetism, Lucas Burns, Tatsuya Daniel, Stephon Alexander, Justin Dressel

Mathematics, Physics, and Computer Science Faculty Articles and Research

Both acoustics and electromagnetism represent measurable fields in terms of dynamical potential fields. Electromagnetic force-fields form a spacetime bivector that is represented by a dynamical energy–momentum 4-vector potential field. Acoustic pressure and velocity fields form an energy–momentum density 4-vector field that is represented by a dynamical action scalar potential field. Surprisingly, standard field theory analyses of spin angular momentum based on these traditional potential representations contradict recent experiments, which motivates a careful reassessment of both theories. We analyze extensions of both theories that use the full geometric structure of spacetime to respect essential symmetries enforced by vacuum wave propagation. The …


Strong Homotopy Lie Algebras And Hypergraphs, Samuel J. Bevins, Marco Aldi Jan 2023

Strong Homotopy Lie Algebras And Hypergraphs, Samuel J. Bevins, Marco Aldi

Undergraduate Research Posters

We study hypergraphs by attaching a nilpotent strong homotopy Lie algebra. We especially focus on hypergraph theoretic information that is encoded in the cohomology of the resulting strong homotopy Lie algebra.


Acoustic Versus Electromagnetic Field Theory: Scalar, Vector, Spinor Representations And The Emergence Of Acoustic Spin, Lucas Burns, Konstantin Y. Bliokh, Franco Nori, Justin Dressel May 2020

Acoustic Versus Electromagnetic Field Theory: Scalar, Vector, Spinor Representations And The Emergence Of Acoustic Spin, Lucas Burns, Konstantin Y. Bliokh, Franco Nori, Justin Dressel

Mathematics, Physics, and Computer Science Faculty Articles and Research

We construct a novel Lagrangian representation of acoustic field theory that describes the local vector properties of longitudinal (curl-free) acoustic fields. In particular, this approach accounts for the recently-discovered nonzero spin angular momentum density in inhomogeneous sound fields in fluids or gases. The traditional acoustic Lagrangian representation with a scalar potential is unable to describe such vector properties of acoustic fields adequately, which are however observable via local radiation forces and torques on small probe particles. By introducing a displacement vector potential analogous to the electromagnetic vector potential, we derive the appropriate canonical momentum and spin densities as conserved Noether …


On A Class Of Quaternionic Positive Definite Functions And Their Derivatives, Daniel Alpay, Fabrizio Colombo, Irene Sabadini Mar 2017

On A Class Of Quaternionic Positive Definite Functions And Their Derivatives, Daniel Alpay, Fabrizio Colombo, Irene Sabadini

Mathematics, Physics, and Computer Science Faculty Articles and Research

In this paper, we start the study of stochastic processes over the skew field of quaternions. We discuss the relation between positive definite functions and the covariance of centered Gaussian processes and the construction of stochastic processes and their derivatives. The use of perfect spaces and strong algebras and the notion of Fock space are crucial in this framework.


Characterization Of The Drilling Via The Vibration Augmenter Of Rotary-Drills And Sound Signal Processing Of Impacted Pipe As A Potential Water Height Assessment Tool, Nicholas Morris Aug 2013

Characterization Of The Drilling Via The Vibration Augmenter Of Rotary-Drills And Sound Signal Processing Of Impacted Pipe As A Potential Water Height Assessment Tool, Nicholas Morris

STAR Program Research Presentations

The focus of the internship has been on two topics: a) Characterize the drilling performance of a novel percussive augmenter – this drill was developed by the JPL’s Advanced Technologies Group and its performance was characterized; and b) Examine the feasibility of striking a pipe as a means of assessing the water height inside the pipe. The purpose of this investigation is to examine the possibility of using a simple method of applying impacts to a pipe wall and determining the water height from the sonic characteristic differences including damping, resonance frequencies, etc. Due to multiple variables that are relevant …