Open Access. Powered by Scholars. Published by Universities.®

Systems Architecture Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Systems Architecture

Adaft: A Resource-Efficient Framework For Adaptive Fault-Tolerance In Cyber-Physical Systems, Ye Xu Nov 2017

Adaft: A Resource-Efficient Framework For Adaptive Fault-Tolerance In Cyber-Physical Systems, Ye Xu

Doctoral Dissertations

Cyber-physical systems frequently have to use massive redundancy to meet application requirements for high reliability. While such redundancy is required, it can be activated adaptively, based on the current state of the controlled plant. Most of the time the physical plant is in a state that allows for a lower level of fault-tolerance. Avoiding the continuous deployment of massive fault-tolerance will greatly reduce the workload of CPSs. In this dissertation, we demonstrate a software simulation framework (AdaFT) that can automatically generate the sub-spaces within which our adaptive fault-tolerance can be applied. We also show the theoretical benefits of AdaFT, and …


Programming Models' Support For Heterogeneous Architecture, Wei Wu May 2017

Programming Models' Support For Heterogeneous Architecture, Wei Wu

Doctoral Dissertations

Accelerator-enhanced computing platforms have drawn a lot of attention due to their massive peak computational capacity. Heterogeneous systems equipped with accelerators such as GPUs have become the most prominent components of High Performance Computing (HPC) systems. Even at the node level the significant heterogeneity of CPU and GPU, i.e. hardware and memory space differences, leads to challenges for fully exploiting such complex architectures. Extending outside the node scope, only escalate such challenges.

Conventional programming models such as data- ow and message passing have been widely adopted in HPC communities. When moving towards heterogeneous systems, the lack of GPU integration causes …


On Leveraging Multi-Path Transport In Mobile Networks, Yeon-Sup Lim Mar 2017

On Leveraging Multi-Path Transport In Mobile Networks, Yeon-Sup Lim

Doctoral Dissertations

Multi-Path TCP (MPTCP) is a new transport protocol that enables mobile devices to simultaneously use several physical paths through multiple network interfaces. MPTCP is particularly useful for mobile devices, which usually have multiple wireless interfaces such as IEEE 802.11 (WiFi), cellular (3G/LTE), and Bluetooth. However, applying MPTCP to mobile devices introduces new concerns since they operate in harsh environments with resource constraints due to intermittent path availability and limited power supply. The goal of this thesis is to resolve these problems so as to be able to practically deploy MPTCP in mobile devices. The first part of the thesis develops …