Open Access. Powered by Scholars. Published by Universities.®

Systems Architecture Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Systems Architecture

Improving The Programmability Of Networked Energy Systems, Noman Bashir Jun 2022

Improving The Programmability Of Networked Energy Systems, Noman Bashir

Doctoral Dissertations

Global warming and climate change have underscored the need for designing sustainable energy systems. Sustainable energy systems, e.g., smart grids, green data centers, differ from the traditional systems in significant ways and present unique challenges to system designers and operators. First, intermittent renewable energy resources power these systems, which break the notion of infinite, reliable, and controllable power supply. Second, these systems come in varying sizes, spanning over large geographical regions. The control of these dispersed and diverse systems raises scalability challenges. Third, the performance modeling and fault detection in sustainable energy systems is still an active research area. Finally, …


Developing A Miniature Smart Boat For Marine Research, Michael Isaac Eirinberg Jun 2022

Developing A Miniature Smart Boat For Marine Research, Michael Isaac Eirinberg

Computer Engineering

This project examines the development of a smart boat which could serve as a possible marine research apparatus. The smart boat consists of a miniature vessel containing a low-cost microcontroller to live stream a camera feed, GPS telemetry, and compass data through its own WiFi access point. The smart boat also has the potential for autonomous navigation. My project captivated the interest of several members of California Polytechnic State University, San Luis Obispo’s (Cal Poly SLO) Marine Science Department faculty, who proposed a variety of fascinating and valuable smart boat applications.


Computational Frameworks For Multi-Robot Cooperative 3d Printing And Planning, Laxmi Prasad Poudel Jul 2021

Computational Frameworks For Multi-Robot Cooperative 3d Printing And Planning, Laxmi Prasad Poudel

Graduate Theses and Dissertations

This dissertation proposes a novel cooperative 3D printing (C3DP) approach for multi-robot additive manufacturing (AM) and presents scheduling and planning strategies that enable multi-robot cooperation in the manufacturing environment. C3DP is the first step towards achieving the overarching goal of swarm manufacturing (SM). SM is a paradigm for distributed manufacturing that envisions networks of micro-factories, each of which employs thousands of mobile robots that can manufacture different products on demand. SM breaks down the complicated supply chain used to deliver a product from a large production facility from one part of the world to another. Instead, it establishes a network …


A Framework To Support Automatic Certification For Self-Adaptive Systems, Ioannis Nearchou Aug 2020

A Framework To Support Automatic Certification For Self-Adaptive Systems, Ioannis Nearchou

Masters Theses

Presently, cyber-physical systems are increasingly being integrated into societies, from the economic sector to the nuclear energy sector. Cyber-physical systems are systems that combine physical, digital, human, and other components, which operate through physical means and software. When system errors occur, the consequences of malfunction could negatively impact human life. Academic studies have relied on the MAPE-K feedback loop model to develop various system components to satisfy the self-adaptive features, such that violation of the safety requirements can be minimized. Assurance of system requirement satisfaction is argued through an industrial standard form, called an assurance case, which is usually applied …


Edge-Cloud Iot Data Analytics: Intelligence At The Edge With Deep Learning, Ananda Mohon M. Ghosh May 2020

Edge-Cloud Iot Data Analytics: Intelligence At The Edge With Deep Learning, Ananda Mohon M. Ghosh

Electronic Thesis and Dissertation Repository

Rapid growth in numbers of connected devices, including sensors, mobile, wearable, and other Internet of Things (IoT) devices, is creating an explosion of data that are moving across the network. To carry out machine learning (ML), IoT data are typically transferred to the cloud or another centralized system for storage and processing; however, this causes latencies and increases network traffic. Edge computing has the potential to remedy those issues by moving computation closer to the network edge and data sources. On the other hand, edge computing is limited in terms of computational power and thus is not well suited for …


Nonlinear Least Squares 3-D Geolocation Solutions Using Time Differences Of Arrival, Michael V. Bredemann Apr 2020

Nonlinear Least Squares 3-D Geolocation Solutions Using Time Differences Of Arrival, Michael V. Bredemann

Mathematics & Statistics ETDs

This thesis uses a geometric approach to derive and solve nonlinear least squares minimization problems to geolocate a signal source in three dimensions using time differences of arrival at multiple sensor locations. There is no restriction on the maximum number of sensors used. Residual errors reach the numerical limits of machine precision. Symmetric sensor orientations are found that prevent closed form solutions of source locations lying within the null space. Maximum uncertainties in relative sensor positions and time difference of arrivals, required to locate a source within a maximum specified error, are found from these results. Examples illustrate potential requirements …


Developing A Uas-Deployable Methane Sensor Using Low-Cost Modular Open-Source Components, Gavin Demali Jan 2020

Developing A Uas-Deployable Methane Sensor Using Low-Cost Modular Open-Source Components, Gavin Demali

Williams Honors College, Honors Research Projects

This project aimed to develop a methane sensor for deployment on an unmanned aerial system (UAS), or drone, platform. This design is centered around low cost, commercially available modular hardware components and open source software libraries. Once successfully developed, this system was deployed at the Bath Nature Preserve in Bath Township, Summit County Ohio in order to detect any potential on site fugitive methane emissions in the vicinity of the oil and gas infrastructure present. The deliverables of this project (i.e. the data collected at BNP) will be given to the land managers there to better inform future management and …


Hybrid Black-Box Solar Analytics And Their Privacy Implications, Dong Chen Oct 2018

Hybrid Black-Box Solar Analytics And Their Privacy Implications, Dong Chen

Doctoral Dissertations

The aggregate solar capacity in the U.S. is rising rapidly due to continuing decreases in the cost of solar modules. For example, the installed cost per Watt (W) for residential photovoltaics (PVs) decreased by 6X from 2009 to 2018 (from $8/W to $1.2/W), resulting in the installed aggregate solar capacity increasing 128X from 2009 to 2018 (from 435 megawatts to 55.9 gigawatts). This increasing solar capacity is imposing operational challenges on utilities in balancing electricity's real-time supply and demand, as solar generation is more stochastic and less predictable than aggregate demand. To address this problem, both academia and utilities have …


Prosense, Johnny Favazza Ii, Casey Glasgow, Matt Epperson Jun 2016

Prosense, Johnny Favazza Ii, Casey Glasgow, Matt Epperson

Computer Engineering

This project aims to gather advanced data sets from MEMS sensors and GPS and deliver it to the user, who can capitalize on the data. The once negligible half-degree difference of your board barreling down a wave can be recorded from a gyro and exploited for the perfect turn. The exact speed dreaded by longboarders where speed wobbles turn into a road rash can be analysed and consequently avoided. Ascertaining the summit of your flight using combined GPS sensors from the ski ramp allows for the correct timing of tricks. When it comes to pursuing excellence in professional sports, amateur …


A Solar-Powered And Multi-Tiered Mesh Node For A Portable In Situ Emergency Response System, Adam Matthews Dec 2013

A Solar-Powered And Multi-Tiered Mesh Node For A Portable In Situ Emergency Response System, Adam Matthews

Graduate Theses and Dissertations

The aftermath of a natural disaster is typically characterized by lack of a reliable medium for dissemination of information to survivors. Current state-of-the-art emergency response systems rely on satellite radio-enabled devices, but survivors, unlike first responders, do not have access to such devices. To mitigate this problem, we present PERPETUU a solar-powered portable GIS microserver. The microserver node can be deployed in a disaster scene, and can serve maps to survivors viewable on browsers of off-the-shelf mobile systems. A key innovation in the design of the PERPETUU node is a multi-tiered hardware architecture-the system combines a low-power micro-controller, a medium-power …


Adaptive Security-Aware Scheduling For Packet Switched Networks Using Real-Time Multi-Agent Systems, Ma'en Saleh Saleh Jun 2012

Adaptive Security-Aware Scheduling For Packet Switched Networks Using Real-Time Multi-Agent Systems, Ma'en Saleh Saleh

Dissertations

Conventional real-time scheduling algorithms are in care of timing constraints; they don’t pay any attention to enhance or optimize the real-time packet’s security performance. In this work, we propose an adaptive security-aware scheduling with congestion control mechanism for packet switching networks using real-time agentbased systems. The proposed system combines the functionality of real-time scheduling with the security service enhancement, where the real-time scheduling unit uses the differentiated-earliest-deadline-first (Diff-EDF) scheduler, while the security service enhancement scheme adopts a congestion control mechanism based on a resource estimation methodology.

The security service enhancement unit was designed based on two models: singlelayer and weighted …


A Secure And Efficient Communications Architecture For Global Information Grid Users Via Cooperating Space Assets, Victor P. Hubenko Jun 2008

A Secure And Efficient Communications Architecture For Global Information Grid Users Via Cooperating Space Assets, Victor P. Hubenko

Theses and Dissertations

With the Information Age in full and rapid development, users expect to have global, seamless, ubiquitous, secure, and efficient communications capable of providing access to real-time applications and collaboration. The United States Department of Defense’s (DoD) Network-Centric Enterprise Services initiative, along with the notion of pushing the “power to the edge,” aims to provide end-users with maximum situational awareness, a comprehensive view of the battlespace, all within a secure networking environment. Building from previous AFIT research efforts, this research developed a novel security framework architecture to address the lack of efficient and scalable secure multicasting in the low earth orbit …