Open Access. Powered by Scholars. Published by Universities.®

Other Computer Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Other Computer Sciences

Feel And Touch: A Haptic Mobile Game To Assess Tactile Processing, Ivonne Monarca, Monica Tentori, Franceli L. Cibrian Nov 2021

Feel And Touch: A Haptic Mobile Game To Assess Tactile Processing, Ivonne Monarca, Monica Tentori, Franceli L. Cibrian

Engineering Faculty Articles and Research

Haptic interfaces have great potential for assessing the tactile processing of children with Autism Spectrum Disorder (ASD), an area that has been under-explored due to the lack of tools to assess it. Until now, haptic interfaces for children have mostly been used as a teaching or therapeutic tool, so there are still open questions about how they could be used to assess tactile processing of children with ASD. This article presents the design process that led to the development of Feel and Touch, a mobile game augmented with vibrotactile stimuli to assess tactile processing. Our feasibility evaluation, with 5 children …


Let's Read: Designing A Smart Display Application To Support Codas When Learning Spoken Language, Katie Rodeghiero, Yingying Yuki Chen, Annika M. Hettmann, Franceli L. Cibrian Nov 2021

Let's Read: Designing A Smart Display Application To Support Codas When Learning Spoken Language, Katie Rodeghiero, Yingying Yuki Chen, Annika M. Hettmann, Franceli L. Cibrian

Engineering Faculty Articles and Research

Hearing children of Deaf adults (CODAs) face many challenges including having difficulty learning spoken languages, experiencing social judgment, and encountering greater responsibilities at home. In this paper, we present a proposal for a smart display application called Let's Read that aims to support CODAs when learning spoken language. We conducted a qualitative analysis using online community content in English to develop the first version of the prototype. Then, we conducted a heuristic evaluation to improve the proposed prototype. As future work, we plan to use this prototype to conduct participatory design sessions with Deaf adults and CODAs to evaluate the …


A Quantitative Validation Of Multi-Modal Image Fusion And Segmentation For Object Detection And Tracking, Nicholas Lahaye, Michael J. Garay, Brian D. Bue, Hesham El-Askary, Erik Linstead Jun 2021

A Quantitative Validation Of Multi-Modal Image Fusion And Segmentation For Object Detection And Tracking, Nicholas Lahaye, Michael J. Garay, Brian D. Bue, Hesham El-Askary, Erik Linstead

Mathematics, Physics, and Computer Science Faculty Articles and Research

In previous works, we have shown the efficacy of using Deep Belief Networks, paired with clustering, to identify distinct classes of objects within remotely sensed data via cluster analysis and qualitative analysis of the output data in comparison with reference data. In this paper, we quantitatively validate the methodology against datasets currently being generated and used within the remote sensing community, as well as show the capabilities and benefits of the data fusion methodologies used. The experiments run take the output of our unsupervised fusion and segmentation methodology and map them to various labeled datasets at different levels of global …


Hierarchical Scheduling For Real-Time Periodic Tasks In Symmetric Multiprocessing, Tom Springer, Peiyi Zhao Jun 2021

Hierarchical Scheduling For Real-Time Periodic Tasks In Symmetric Multiprocessing, Tom Springer, Peiyi Zhao

Engineering Faculty Articles and Research

In this paper, we present a new hierarchical scheduling framework for periodic tasks in symmetric multiprocessor (SMP) platforms. Partitioned and global scheduling are the two main approaches used by SMP based systems where global scheduling is recommended for overall performance and partitioned scheduling is recommended for hard real-time performance. Our approach combines both the global and partitioned approaches of traditional SMP-based schedulers to provide hard real-time performance guarantees for critical tasks and improved response times for soft real-time tasks. Implemented as part of VxWorks, the results are confirmed using a real-time benchmark application, where response times were improved for soft …


Convolutional Neural Networks For Deflate Data Encoding Classification Of High Entropy File Fragments, Nehal Ameen May 2021

Convolutional Neural Networks For Deflate Data Encoding Classification Of High Entropy File Fragments, Nehal Ameen

University of New Orleans Theses and Dissertations

Data reconstruction is significantly improved in terms of speed and accuracy by reliable data encoding fragment classification. To date, work on this problem has been successful with file structures of low entropy that contain sparse data, such as large tables or logs. Classifying compressed, encrypted, and random data that exhibit high entropy is an inherently difficult problem that requires more advanced classification approaches. We explore the ability of convolutional neural networks and word embeddings to classify deflate data encoding of high entropy file fragments after establishing ground truth using controlled datasets. Our model is designed to either successfully classify file …


An Analysis Of Modern Password Manager Security And Usage On Desktop And Mobile Devices, Timothy Oesch May 2021

An Analysis Of Modern Password Manager Security And Usage On Desktop And Mobile Devices, Timothy Oesch

Doctoral Dissertations

Security experts recommend password managers to help users generate, store, and enter strong, unique passwords. Prior research confirms that managers do help users move towards these objectives, but it also identified usability and security issues that had the potential to leak user data or prevent users from making full use of their manager. In this dissertation, I set out to measure to what extent modern managers have addressed these security issues on both desktop and mobile environments. Additionally, I have interviewed individuals to understand their password management behavior.

I begin my analysis by conducting the first security evaluation of the …


A Deep Learning-Based Automatic Object Detection Method For Autonomous Driving Ships, Ojonoka Erika Atawodi May 2021

A Deep Learning-Based Automatic Object Detection Method For Autonomous Driving Ships, Ojonoka Erika Atawodi

Master's Theses

An important feature of an Autonomous Surface Vehicles (ASV) is its capability of automatic object detection to avoid collisions, obstacles and navigate on their own.

Deep learning has made some significant headway in solving fundamental challenges associated with object detection and computer vision. With tremendous demand and advancement in the technologies associated with ASVs, a growing interest in applying deep learning techniques in handling challenges pertaining to autonomous ship driving has substantially increased over the years.

In this thesis, we study, design, and implement an object recognition framework that detects and recognizes objects found in the sea. We first curated …


Design Project: Smart Headband, John Michel, Jack Durkin, Noah Lewis Jan 2021

Design Project: Smart Headband, John Michel, Jack Durkin, Noah Lewis

Williams Honors College, Honors Research Projects

Concussion in sports is a prevalent medical issue. It can be difficult for medical professionals to diagnose concussions. With the fast pace nature of many sports, and the damaging effects of concussions, it is important that any concussion risks are assessed immediately. There is a growing trend of wearable technology that collects data such as steps and provides the wearer with in-depth information regarding their performance. The Smart Headband project created a wearable that can record impact data and provide the wearer with a detailed analysis on their risk of sustaining a concussion. The Smart Headband uses accelerometers and gyroscopes …