Open Access. Powered by Scholars. Published by Universities.®

Other Computer Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Other Computer Sciences

Integrated Development And Parallelization Of Automated Dicentric Chromosome Identification Software To Expedite Biodosimetry Analysis, Yanxin Li Apr 2013

Integrated Development And Parallelization Of Automated Dicentric Chromosome Identification Software To Expedite Biodosimetry Analysis, Yanxin Li

Electronic Thesis and Dissertation Repository

Manual cytogenetic biodosimetry lacks the ability to handle mass casualty events. We present an automated dicentric chromosome identification (ADCI) software utilizing parallel computing technology. A parallelization strategy combining data and task parallelism, as well as optimization of I/O operations, has been designed, implemented, and incorporated in ADCI. Experiments on an eight-core desktop show that our algorithm can expedite the process of ADCI by at least four folds. Experiments on Symmetric Computing, SHARCNET, Blue Gene/Q multi-processor computers demonstrate the capability of parallelized ADCI to process thousands of samples for cytogenetic biodosimetry in a few hours. This increase in speed underscores the …


A Novel Computational Framework For Transcriptome Analysis With Rna-Seq Data, Yin Hu Jan 2013

A Novel Computational Framework For Transcriptome Analysis With Rna-Seq Data, Yin Hu

Theses and Dissertations--Computer Science

The advance of high-throughput sequencing technologies and their application on mRNA transcriptome sequencing (RNA-seq) have enabled comprehensive and unbiased profiling of the landscape of transcription in a cell. In order to address the current limitation of analyzing accuracy and scalability in transcriptome analysis, a novel computational framework has been developed on large-scale RNA-seq datasets with no dependence on transcript annotations. Directly from raw reads, a probabilistic approach is first applied to infer the best transcript fragment alignments from paired-end reads. Empowered by the identification of alternative splicing modules, this framework then performs precise and efficient differential analysis at automatically detected …