Open Access. Powered by Scholars. Published by Universities.®

Other Computer Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Other Computer Sciences

Discrimination Of Leucine And Isoleucine In De Novo Peptide Sequencing Using Deep Neural Networks, Bingran Shen Aug 2020

Discrimination Of Leucine And Isoleucine In De Novo Peptide Sequencing Using Deep Neural Networks, Bingran Shen

Electronic Thesis and Dissertation Repository

De novo peptide sequencing from tandem MS data is a key technology in proteomics for understanding the structure of proteins, especially for first seen sequences. Although this technique has advanced rapidly in recent years and become more effective, one crucial problem remained unsolved. Due to the isomerism of leucine and isoleucine, they are practically indistinguishable in de novo sequencing using traditional tandem MS data. Some experimental attempts have been made to resolve this ambiguity such as EThCD fragmentation process. In this study, we took a data focused approach rather than only looking for characteristic satellite ions produced by the EThCD …


Allosteric Regulation At The Crossroads Of New Technologies: Multiscale Modeling, Networks, And Machine Learning, Gennady M. Verkhivker, Steve Agajanian, Guang Hu, Peng Tao Jul 2020

Allosteric Regulation At The Crossroads Of New Technologies: Multiscale Modeling, Networks, And Machine Learning, Gennady M. Verkhivker, Steve Agajanian, Guang Hu, Peng Tao

Mathematics, Physics, and Computer Science Faculty Articles and Research

Allosteric regulation is a common mechanism employed by complex biomolecular systems for regulation of activity and adaptability in the cellular environment, serving as an effective molecular tool for cellular communication. As an intrinsic but elusive property, allostery is a ubiquitous phenomenon where binding or disturbing of a distal site in a protein can functionally control its activity and is considered as the “second secret of life.” The fundamental biological importance and complexity of these processes require a multi-faceted platform of synergistically integrated approaches for prediction and characterization of allosteric functional states, atomistic reconstruction of allosteric regulatory mechanisms and discovery of …