Open Access. Powered by Scholars. Published by Universities.®

Other Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Discipline
Keyword
Publication Year

Articles 1 - 30 of 58

Full-Text Articles in Other Chemistry

De Novo Drug Design Using Transformer-Based Machine Translation And Reinforcement Learning Of An Adaptive Monte Carlo Tree Search, Dony Ang, Cyril Rakovski, Hagop S. Atamian Jan 2024

De Novo Drug Design Using Transformer-Based Machine Translation And Reinforcement Learning Of An Adaptive Monte Carlo Tree Search, Dony Ang, Cyril Rakovski, Hagop S. Atamian

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

The discovery of novel therapeutic compounds through de novo drug design represents a critical challenge in the field of pharmaceutical research. Traditional drug discovery approaches are often resource intensive and time consuming, leading researchers to explore innovative methods that harness the power of deep learning and reinforcement learning techniques. Here, we introduce a novel drug design approach called drugAI that leverages the Encoder–Decoder Transformer architecture in tandem with Reinforcement Learning via a Monte Carlo Tree Search (RL-MCTS) to expedite the process of drug discovery while ensuring the production of valid small molecules with drug-like characteristics and strong binding affinities towards …


Group 14 Metallocene Catalysts For Carbonyl Hydroboration And Cyanosilylation, Haley J. Robertson, Mallory N. Fujiwara, Allegra L. Liberman-Martin Jan 2024

Group 14 Metallocene Catalysts For Carbonyl Hydroboration And Cyanosilylation, Haley J. Robertson, Mallory N. Fujiwara, Allegra L. Liberman-Martin

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

A series of six Group 14 metallocene compounds (M = Ge, Sn, Pb) were studied as catalysts for carbonyl hydroboration and cyanosilylation reactions at room temperature. Both bis(pentamethylcyclopentadienyl) and tetramethyldisiloxa[3]metallocenophane compounds were compared. The tin and lead metallocenophanes exhibited the highest reactivity in hydroboration and cyanosilylation reactions. Hammett analysis of aldehyde hydroboration provided a ρ value of 0.73, suggesting a buildup of negative charge during the turnover-limiting step, consistent with the transition state for hydride transfer to the carbonyl center. NMR studies of Lewis acidity indicate that the Ge, Sn, and Pb tetramethyldisiloxa[3]metallocenophane compounds are weak Lewis acids.


Mutational Analysis Of The Nitrogenase Carbon Monoxide Protective Protein Cown Reveals That A Conserved C‑Terminal Glutamic Acid Residue Is Necessary For Its Activity, Dustin L. Willard, Joshuah J. Arellano, Mitch Underdahl, Terrence M. Lee, Avinash S. Ramaswamy, Gabriella Fumes, Agatha Kliman, Emily Y. Wong, Cedric P. Owens Dec 2023

Mutational Analysis Of The Nitrogenase Carbon Monoxide Protective Protein Cown Reveals That A Conserved C‑Terminal Glutamic Acid Residue Is Necessary For Its Activity, Dustin L. Willard, Joshuah J. Arellano, Mitch Underdahl, Terrence M. Lee, Avinash S. Ramaswamy, Gabriella Fumes, Agatha Kliman, Emily Y. Wong, Cedric P. Owens

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Nitrogenase is the only enzyme that catalyzes the reduction of nitrogen gas into ammonia. Nitrogenase is tightly inhibited by the environmental gas carbon monoxide (CO). Many nitrogen fixing bacteria protect nitrogenase from CO inhibition using the protective protein CowN. This work demonstrates that a conserved glutamic acid residue near the C-terminus of Gluconacetobacter diazotrophicus CowN is necessary for its function. Mutation of the glutamic acid residue abolishes both CowN’s protection against CO inhibition and the ability of CowN to bind to nitrogenase. In contrast, a conserved C-terminal cysteine residue is not important for CO protection by CowN. Overall, this work …


Carbodiimide And Isocyanate Hydroboration By A Cyclic Carbodiphosphorane Catalyst, Ben A. Janda, Julie A. Tran, Daniel K. Chang, Gabriela C. Nerhood, O. Maduka Ogba, Allegra L. Liberman-Martin Oct 2023

Carbodiimide And Isocyanate Hydroboration By A Cyclic Carbodiphosphorane Catalyst, Ben A. Janda, Julie A. Tran, Daniel K. Chang, Gabriela C. Nerhood, O. Maduka Ogba, Allegra L. Liberman-Martin

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

We report hydroboration of carbodiimide and isocyanate substrates catalyzed by a cyclic carbodiphosphorane catalyst. The cyclic carbodiphosphorane outperformed the other Lewis basic carbon species tested, including other zerovalent carbon compounds, phosphorus ylides, an N-heterocyclic carbene, and an N-heterocyclic olefin. Hydroborations of seven carbodiimides and nine isocyanates were performed at room temperature to form N-boryl formamidine and N-boryl formamide products. Intermolecular competition experiments demonstrated the selective hydroboration of alkyl isocyanates over carbodiimide and ketone substrates. DFT calculations support a proposed mechanism involving activation of pinacolborane by the carbodiphosphorane catalyst, followed by hydride transfer and B−N bond formation.


Arginine Methylation Of The Pgc-1Α C‑Terminus Is Temperature- Dependent, Meryl Mendoz, Mariel Mendoza, Tiffany Lubrino, Sidney Briski, Immaculeta Osuji, Janielle Cuala, Brendan Ly, Ivan Ocegueda, Harvey Peralta, Benjamin A. Garcia, Cecilia Zurita-Lopez Dec 2022

Arginine Methylation Of The Pgc-1Α C‑Terminus Is Temperature- Dependent, Meryl Mendoz, Mariel Mendoza, Tiffany Lubrino, Sidney Briski, Immaculeta Osuji, Janielle Cuala, Brendan Ly, Ivan Ocegueda, Harvey Peralta, Benjamin A. Garcia, Cecilia Zurita-Lopez

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

We set out to determine whether the C-terminus (amino acids 481–798) of peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α, UniProt Q9UBK2), a regulatory metabolic protein involved in mitochondrial biogenesis, and respiration, is an arginine methyltransferase substrate. Arginine methylation by protein arginine methyltransferases (PRMTs) alters protein function and thus contributes to various cellular processes. In addition to confirming methylation of the C-terminus by PRMT1 as described in the literature, we have identified methylation by another member of the PRMT family, PRMT7. We performed in vitro methylation reactions using recombinant mammalian PRMT7 and PRMT1 at 37, 30, 21, 18, and 4 °C. …


Symmetry-Resolved Co Desorption And Oxidation Dynamics On O/Ru(0001) Probed At The C K-Edge By Ultrafast X-Ray Spectroscopy, Jerry Larue, Boyang Liu, Gabriel L. S. Rodrigues, Chang Liu, Jose Antonio Garrido Torres, Simon Schreck, Elias Diesen, Matthew Weston, Hirohito Ogasawara, Fivos Perakis, Martina Dell'angela, Flavio Capotondi, Devon Ball, Conner Carnahan, Gary Zeri, Luca Giannessi, Emanuele Pedersoli, Denys Naumenko, Peter Amann, Ivaylo Nikolov, Lorenzo Raimondi, Carlo Spezzani, Martin Beye, Johannes Voss, Hsin-Yi Wang, Filippo Cavalca, Jörgen Gladh, Sergey Koroidov, Frank Abild-Pedersen, Manuel Kolb, Piter S. Miedema, Roberto Costantini, Tony F. Heinz, Alan C. Luntz, Lars G. M. Pettersson, Anders Nilsson Sep 2022

Symmetry-Resolved Co Desorption And Oxidation Dynamics On O/Ru(0001) Probed At The C K-Edge By Ultrafast X-Ray Spectroscopy, Jerry Larue, Boyang Liu, Gabriel L. S. Rodrigues, Chang Liu, Jose Antonio Garrido Torres, Simon Schreck, Elias Diesen, Matthew Weston, Hirohito Ogasawara, Fivos Perakis, Martina Dell'angela, Flavio Capotondi, Devon Ball, Conner Carnahan, Gary Zeri, Luca Giannessi, Emanuele Pedersoli, Denys Naumenko, Peter Amann, Ivaylo Nikolov, Lorenzo Raimondi, Carlo Spezzani, Martin Beye, Johannes Voss, Hsin-Yi Wang, Filippo Cavalca, Jörgen Gladh, Sergey Koroidov, Frank Abild-Pedersen, Manuel Kolb, Piter S. Miedema, Roberto Costantini, Tony F. Heinz, Alan C. Luntz, Lars G. M. Pettersson, Anders Nilsson

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

We report on carbon monoxide desorption and oxidation induced by 400 nm femtosecond laser excitation on the O/Ru(0001) surface probed by time-resolved x-ray absorption spectroscopy (TR-XAS) at the carbon K-edge. The experiments were performed under constant background pressures of CO (6 × 10−8 Torr) and O2 (3 × 10−8 Torr). Under these conditions, we detect two transient CO species with narrow 2π* peaks, suggesting little 2π* interaction with the surface. Based on polarization measurements, we find that these two species have opposing orientations: (1) CO favoring a more perpendicular orientation and (2) CO favoring a more parallel orientation …


Calcium Bistriflimide-Mediated Sulfur(Vi)–Fluoride Exchange (Sufex): Mechanistic Insights Toward Instigating Catalysis, Brian Han, Samuel R. Khasnavis, Matthew Nwerem, Michael Bertagna, Nicholas D. Ball, O. Maduka Ogba Jun 2022

Calcium Bistriflimide-Mediated Sulfur(Vi)–Fluoride Exchange (Sufex): Mechanistic Insights Toward Instigating Catalysis, Brian Han, Samuel R. Khasnavis, Matthew Nwerem, Michael Bertagna, Nicholas D. Ball, O. Maduka Ogba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

We report a mechanistic investigation of calcium bistriflimide-mediated sulfur(VI)–fluoride exchange (SuFEx) between sulfonyl fluorides and amines. We determine the likely pre-activation resting state─a calcium bistriflimide complex with ligated amines─thus allowing for corroborated calculation of the SuFEx activation barrier at ∼21 kcal/mol, compared to 21.5 ± 0.14 kcal/mol derived via kinetics experiments. Transition state analysis revealed: (1) a two-point calcium-substrate contact that activates the sulfur(VI) center and stabilizes the leaving fluoride and (2) a 1,4-diazabicyclo[2.2.2]octane additive that provides Brønsted-base activation of the nucleophilic amine. Stable Ca–F complexes upon sulfonamide formation are likely contributors to inhibited catalytic turnover, and a proof-of-principle redesign …


Escherichia Coli Alanyl-Trna Synthetase Maintains Proofreading Activity And Translational Accuracy Under Oxidative Stress, Arundhati Kavoor, Paul Kelly, Michael Ibba Feb 2022

Escherichia Coli Alanyl-Trna Synthetase Maintains Proofreading Activity And Translational Accuracy Under Oxidative Stress, Arundhati Kavoor, Paul Kelly, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Aminoacyl-tRNA synthetases (aaRSs) are enzymes that synthesize aminoacyl-tRNAs to facilitate translation of the genetic code. Quality control by aaRS proofreading and other mechanisms maintains translational accuracy, which promotes cellular viability. Systematic disruption of proofreading, as recently demonstrated for alanyl-tRNA synthetase (AlaRS), leads to dysregulation of the proteome and reduced viability. Recent studies showed that environmental challenges such as exposure to reactive oxygen species can also alter aaRS synthetic and proofreading functions, prompting us to investigate if oxidation might positively or negatively affect AlaRS activity. We found that while oxidation leads to modification of several residues in Escherichia coli AlaRS, unlike …


Methanol Decomposition On Ni(111) And O/Ni(111), Henrik Öström, Bingjie Zhang, Tiffany Vallejo, Bryn Merrill, Jeremy Huang, Jerry Larue Jan 2022

Methanol Decomposition On Ni(111) And O/Ni(111), Henrik Öström, Bingjie Zhang, Tiffany Vallejo, Bryn Merrill, Jeremy Huang, Jerry Larue

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Methanol decomposition on Ni(111) surfaces has been studied in the presence and absence of oxygen using temperature-programmed desorption and temperature-dependent sum frequency generation spectroscopy. Under both conditions the C–H and O–H bonds break, forming carbon monoxide and atomic hydrogen on the surface. No C–O bond scission was observed, limiting the number of reaction pathways. The O–H bonds break first (>150 K), forming surface methoxy, followed by C–H bond breakage (>250 K). All atomic hydrogen desorbs from the surface as H2 through H+H recombinative desorption. H2 desorbs at a higher temperature in the presence of oxygen (>300 K) …


Oxidation Alters The Architecture Of The Phenylalanyl-Trna Synthetase Editing Domain To Confer Hyperaccuracy, Pooja Srinivas, Rebecca E. Steiner, Ian J. Pavelich, Ricardo Guerrera-Ferreira, Puneet Juneja, Michael Ibba, Christine M. Dunham Sep 2021

Oxidation Alters The Architecture Of The Phenylalanyl-Trna Synthetase Editing Domain To Confer Hyperaccuracy, Pooja Srinivas, Rebecca E. Steiner, Ian J. Pavelich, Ricardo Guerrera-Ferreira, Puneet Juneja, Michael Ibba, Christine M. Dunham

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

High fidelity during protein synthesis is accomplished by aminoacyl-tRNA synthetases (aaRSs). These enzymes ligate an amino acid to a cognate tRNA and have proofreading and editing capabilities that ensure high fidelity. Phenylalanyl-tRNA synthetase (PheRS) preferentially ligates a phenylalanine to a tRNAPhe over the chemically similar tyrosine, which differs from phenylalanine by a single hydroxyl group. In bacteria that undergo exposure to oxidative stress such as Salmonella enterica serovar Typhimurium, tyrosine isomer levels increase due to phenylalanine oxidation. Several residues are oxidized in PheRS and contribute to hyperactive editing, including against mischarged Tyr-tRNAPhe, despite these oxidized residues not …


Emergence Of Non-Hexagonal Crystal Packing Of Deswollen And Deformed Ultra-Soft Microgels Under Osmotic Pressure Control, Molla R. Islam, Rachel Nguyen, L. Andrew Lyon Sep 2021

Emergence Of Non-Hexagonal Crystal Packing Of Deswollen And Deformed Ultra-Soft Microgels Under Osmotic Pressure Control, Molla R. Islam, Rachel Nguyen, L. Andrew Lyon

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Highly solvent swollen poly(N-isopropylacrylamide-co-acrylic acid) microgels are synthesized without exogenous crosslinker, making them extremely soft and deformable. These ultralow crosslinked microgels (ULC) are incubated under controlled osmotic pressure to provide a slow (and presumably thermodynamically controlled) approach to higher packing densities. It is found that ULC microgels show stable colloidal packing over a very wide range of osmotic pressures and thus packing densities. Surprising observation of co-existence between hexagonal and square lattices is also made over the lower range of studied osmotic pressures, with microgels apparently changing shape from spheres to cubes in defects or grain boundaries. It is proposed …


An Examination Of Factors Influencing Small Proton Chemical Shift Differences In Nitrogen-Substituted Monodeuterated Methyl Groups, Stuart J. Elliott, O. Maduka Ogba, Lynda J. Brown, Daniel J. O'Leary Sep 2021

An Examination Of Factors Influencing Small Proton Chemical Shift Differences In Nitrogen-Substituted Monodeuterated Methyl Groups, Stuart J. Elliott, O. Maduka Ogba, Lynda J. Brown, Daniel J. O'Leary

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Monodeuterated methyl groups have previously been demonstrated to provide access to long-lived nuclear spin states. This is possible when the CH2 D rotamers have sufficiently different populations and the local environment is chiral, which foments a non-negligible isotropic chemical shift difference between the two CH2 D protons. In this article, the focus is on the N-CH2 D group of N-CH2 D-2-methylpiperidine and other suitable CH2 D piperidine derivatives. We used a combined experimental and computational approach to investigate how rotameric symmetry breaking leads to a 1H CH2 D chemical shift …


Crystal Structure Of 2-(2,6-Diisopropylphenyl)-N,Ndiethyl- 3,3-Dimethyl-2-Azaspiro[4.5]Decan-1- Amine: A Diethylamine Adduct Of A Cyclic(Alkyl)- (Amino)Carbene (Caac), Roxanne A. Naumann, Joseph W. Ziller, Allegra Liberman-Martin Aug 2021

Crystal Structure Of 2-(2,6-Diisopropylphenyl)-N,Ndiethyl- 3,3-Dimethyl-2-Azaspiro[4.5]Decan-1- Amine: A Diethylamine Adduct Of A Cyclic(Alkyl)- (Amino)Carbene (Caac), Roxanne A. Naumann, Joseph W. Ziller, Allegra Liberman-Martin

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

The structure of the title compound, C27H46N2, at 93 K has monoclinic (P21/n) symmetry. The title compound was prepared by treatment of 2-(2,6-diiso­propyl­phenyl)-3,3-dimethyl-2-aza­spiro­[4.5]dec-1-en-2-ium hydrogen dichloride with two equivalents of lithium di­ethyl­amide. Characterization of the title compound by single-crystal X-ray diffraction and 1H and 13C NMR spectroscopy is presented. Formation of the di­ethyl­amine adduct of the cyclic(alk­yl)(amino)­carbene (CAAC) was unexpected, as deprotonation using lithium diiso­propyl­amide results in free CAAC formation.


Ultrafast Adsorbate Excitation Probed With Subpicosecond-Resolution X-Ray Absorption Spectroscopy, Elias Diesen, Hsin-Yi Wang, Simon Schreck, Matthew Weston, Hirohito Ogasawara, Jerry Larue, Fivos Perakis, Martina Dell'angela, Flavio Capotondi, Luca Giannessi, Martin Beye, Filippo Cavalca, Boyang Liu, Jörgen Gladh, Sergey Koroidov, Piter S. Miedema, Roberto Costantini, Tony F. Heinz, Frank Abild-Pedersen, Johannes Voss, Alan C. Luntz, Anders Nilsson Jun 2021

Ultrafast Adsorbate Excitation Probed With Subpicosecond-Resolution X-Ray Absorption Spectroscopy, Elias Diesen, Hsin-Yi Wang, Simon Schreck, Matthew Weston, Hirohito Ogasawara, Jerry Larue, Fivos Perakis, Martina Dell'angela, Flavio Capotondi, Luca Giannessi, Martin Beye, Filippo Cavalca, Boyang Liu, Jörgen Gladh, Sergey Koroidov, Piter S. Miedema, Roberto Costantini, Tony F. Heinz, Frank Abild-Pedersen, Johannes Voss, Alan C. Luntz, Anders Nilsson

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

We use a pump-probe scheme to measure the time evolution of the C K-edge x-ray absorption spectrum from CO/Ru(0001) after excitation by an ultrashort high-intensity optical laser pulse. Because of the short duration of the x-ray probe pulse and precise control of the pulse delay, the excitation-induced dynamics during the first picosecond after the pump can be resolved with unprecedented time resolution. By comparing with density functional theory spectrum calculations, we find high excitation of the internal stretch and frustrated rotation modes occurring within 200 fs of laser excitation, as well as thermalization of the system in the picosecond …


A Bacterial Inflammation Sensor Regulates C-Di-Gmp Signaling, Adhesion, And Biofilm Formation, Arden Perkins, Dan A. Tudorica, Raphael D. Teixeira, Tilman Schirmer, Lindsay Zumwalt, O. Maduka Ogba, C. Keith Cassidy, Phillip J. Stansfeld, Karen Guillemin Jun 2021

A Bacterial Inflammation Sensor Regulates C-Di-Gmp Signaling, Adhesion, And Biofilm Formation, Arden Perkins, Dan A. Tudorica, Raphael D. Teixeira, Tilman Schirmer, Lindsay Zumwalt, O. Maduka Ogba, C. Keith Cassidy, Phillip J. Stansfeld, Karen Guillemin

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Bacteria that colonize animals must overcome, or coexist, with the reactive oxygen species products of inflammation, a front-line defense of innate immunity. Among these is the neutrophilic oxidant bleach, hypochlorous acid (HOCl), a potent antimicrobial that plays a primary role in killing bacteria through nonspecific oxidation of proteins, lipids, and DNA. Here, we report that in response to increasing HOCl levels, Escherichia coli regulates biofilm production via activation of the diguanylate cyclase DgcZ. We identify the mechanism of DgcZ sensing of HOCl to be direct oxidation of its regulatory chemoreceptor zinc-binding (CZB) domain. Dissection of CZB signal transduction reveals that …


Cown Sustains Nitrogenase Turnover In The Presence Of The Inhibitor Carbon Monoxide, Michael S. Medina, Kevin O. Bretzing, Richard A. Aviles, Kiersten M. Chong, Alejandro Espinoza, Chloe Nicole G. Garcia, Benjamin B. Katz, Ruchita N. Kharwa, Andrea Hernandez, Justin L. Lee, Terrence M. Lee, Christine Lo Verde, Max W. Strul, Emily Y. Wong, Cedric P. Owens Mar 2021

Cown Sustains Nitrogenase Turnover In The Presence Of The Inhibitor Carbon Monoxide, Michael S. Medina, Kevin O. Bretzing, Richard A. Aviles, Kiersten M. Chong, Alejandro Espinoza, Chloe Nicole G. Garcia, Benjamin B. Katz, Ruchita N. Kharwa, Andrea Hernandez, Justin L. Lee, Terrence M. Lee, Christine Lo Verde, Max W. Strul, Emily Y. Wong, Cedric P. Owens

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Nitrogenase is the only enzyme capable of catalyzing nitrogen fixation, the reduction of dinitrogen gas (N2) to ammonia (NH3). Nitrogenase is tightly inhibited by the environmental gas carbon monoxide (CO). Nitrogen-fixing bacteria rely on the protein CowN to grow in the presence of CO. However, the mechanism by which CowN operates is unknown. Here, we present the biochemical characterization of CowN and examine how CowN protects nitrogenase from CO. We determine that CowN interacts directly with nitrogenase and that CowN protection observes hyperbolic kinetics with respect to CowN concentration. At a CO concentration of 0.001 atm, …


The Mechanism Of Β-N-Methylamino-L-Alanine Inhibition Of Trna Aminoacylation And Its Impact On Misincorporation, Nien-Ching Han, Tammy J. Bullwinkle, Kaeli F. Loeb, Kym F. Faull, Kyle Mohler, Jesse Rinehart, Michael Ibba Jan 2021

The Mechanism Of Β-N-Methylamino-L-Alanine Inhibition Of Trna Aminoacylation And Its Impact On Misincorporation, Nien-Ching Han, Tammy J. Bullwinkle, Kaeli F. Loeb, Kym F. Faull, Kyle Mohler, Jesse Rinehart, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

β-N-methylamino-l-alanine (BMAA) is a nonproteinogenic amino acid that has been associated with neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and Alzheimer's disease (AD). BMAA has been found in human protein extracts; however, the mechanism by which it enters the proteome is still unclear. It has been suggested that BMAA is misincorporated at serine codons during protein synthesis, but direct evidence of its cotranslational incorporation is currently lacking. Here, using LC-MS–purified BMAA and several biochemical assays, we sought to determine whether any aminoacyl-tRNA synthetase (aaRS) utilizes BMAA as a substrate for aminoacylation. Despite BMAA's previously predicted misincorporation at serine …


Mechanism And Chemoselectivity For Hocl-Mediated Oxidation Of Zinc-Bound Thiolates, Lindsay Zumwalt, Arden Perkins, O. Maduka Ogba Sep 2020

Mechanism And Chemoselectivity For Hocl-Mediated Oxidation Of Zinc-Bound Thiolates, Lindsay Zumwalt, Arden Perkins, O. Maduka Ogba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Quantum mechanical calculations reveal the preferred mechanism and origins of chemoselectivity for HOCl‐mediated oxidation of zinc‐bound thiolates implicated in bacterial redox sensing. Distortion/interaction models show that minimizing geometric distortion at the zinc complex during the rate‐limiting nucleophilic substitution step controls the mechanistic preference for OH over Cl transfer with HOCl and the chemoselectivity for HOCl over H2O2.


Mechanism And Chemoselectivity For Hocl-Mediated Oxidation Of Zinc-Bound Thiolates, Lindsay Zumwalt, Arden Perkins, O. Maduka Ogba Sep 2020

Mechanism And Chemoselectivity For Hocl-Mediated Oxidation Of Zinc-Bound Thiolates, Lindsay Zumwalt, Arden Perkins, O. Maduka Ogba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Quantum mechanical calculations reveal the preferred mechanism and origins of chemoselectivity for HOCl‐mediated oxidation of zinc‐bound thiolates implicated in bacterial redox sensing. Distortion/interaction models show that minimizing geometric distortion at the zinc complex during the rate‐limiting nucleophilic substitution step controls the mechanistic preference for OH over Cl transfer with HOCl and the chemoselectivity for HOCl over H2O2.


Design And Synthesis Of Core–Shell Microgels With One‐Step Clickable Crosslinked Cores And Ultralow Crosslinked Shells, Molla R. Islam, Chelsea Nguy, Sanika Pandit, L. Andrew Lyon Sep 2020

Design And Synthesis Of Core–Shell Microgels With One‐Step Clickable Crosslinked Cores And Ultralow Crosslinked Shells, Molla R. Islam, Chelsea Nguy, Sanika Pandit, L. Andrew Lyon

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

The present study is conducted to explore the engineering of core–shell microgels such that the core can be rapidly labeled with a variety of fluorophores, while the shell retains the softness needed in specific biomedical applications. Azide containing crosslinked core particles based on a crosslinked poly(N‐isopropylacrylamide) particle, using a one‐pot, multistep polymerization is synthesized. A core–shell microgel is then synthesized by growing a crosslinker‐free poly(N‐isopropylacrylamide)‐co‐acrylic acid (ULC10AAc) shell through a two‐step seed and feed polymerization. A simple “click” reaction between the azide present on the core and dibenzocyclooctyne containing fluorophores to make dyed core–shell …


Capsaicin Is A Negative Allosteric Modulator Of The 5-Ht3 Receptor, Eslam El Nebrisi, Tatiana Prytkova, Dietrich Ernst Lorke, Luke Howarth, Asma Hassan Alzaabi, Keun-Hang Susan Yang, Frank Christopher Howarth, Murat Oz Aug 2020

Capsaicin Is A Negative Allosteric Modulator Of The 5-Ht3 Receptor, Eslam El Nebrisi, Tatiana Prytkova, Dietrich Ernst Lorke, Luke Howarth, Asma Hassan Alzaabi, Keun-Hang Susan Yang, Frank Christopher Howarth, Murat Oz

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

In this study, effects of capsaicin, an active ingredient of the capsicum plant, were investigated on human 5-hydroxytryptamine type 3 (5-HT3) receptors. Capsaicin reversibly inhibited serotonin (5-HT)-induced currents recorded by two-electrode voltage clamp method in Xenopus oocytes. The inhibition was time- and concentration-dependent with an IC50 = 62 μM. The effect of capsaicin was not altered in the presence of capsazepine, and by intracellular BAPTA injections or trans-membrane potential changes. In radio-ligand binding studies, capsaicin did not change the specific binding of the 5-HT3 antagonist [3H]GR65630, indicating that it is a noncompetitive inhibitor of …


Leaf Traits Can Be Used To Predict Rates Of Litter Decomposition, Marc Rosenfield, Jennifer L. Funk, Jason K. Keller, Catrina Clausen, Kimberlee Cyphers Jun 2020

Leaf Traits Can Be Used To Predict Rates Of Litter Decomposition, Marc Rosenfield, Jennifer L. Funk, Jason K. Keller, Catrina Clausen, Kimberlee Cyphers

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Strong relationships exist between litter chemistry traits and rates of litter decomposition. However, leaf traits are more commonly found in online trait databases than litter traits and fewer studies have examined how well leaf traits predict litter decomposition rates. Furthermore, while bulk leaf nitrogen (N) content is known to regulate litter decomposition, few studies have explored the importance of N biochemistry fractions, such as protein and amino acid concentration. Here, we decomposed green leaves and naturally senesced leaf litter of nine species representing a wide range of leaf functional traits. We evaluated the ability of traits associated with leaf and …


Time-Resolved Observation Of Transient Precursor State Of Co On Ru(0001) Using Carbon K-Edge Spectroscopy, Hsin-Yi Wang, Simon Schreck, Matthew Weston, Hirohito Ogasawara, Jerry Larue, Fivos Perakis, Martina Dell'angela, Flavio Capotondi, Luca Giannessi, Emanuele Pedersoli, Denys Naumenko, Ivaylo Nikolov, Lorenzo Raimondi, Carlo Spezzani, Martin Beye, Filippo Cavalca, Boyang Liu, Jörgen Gladh, Sergey Koroidov, Piter S. Miedema, Roberto Costantini, Lars G. M. Pettersson, Anders Nilsson Sep 2019

Time-Resolved Observation Of Transient Precursor State Of Co On Ru(0001) Using Carbon K-Edge Spectroscopy, Hsin-Yi Wang, Simon Schreck, Matthew Weston, Hirohito Ogasawara, Jerry Larue, Fivos Perakis, Martina Dell'angela, Flavio Capotondi, Luca Giannessi, Emanuele Pedersoli, Denys Naumenko, Ivaylo Nikolov, Lorenzo Raimondi, Carlo Spezzani, Martin Beye, Filippo Cavalca, Boyang Liu, Jörgen Gladh, Sergey Koroidov, Piter S. Miedema, Roberto Costantini, Lars G. M. Pettersson, Anders Nilsson

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

The transient dynamics of carbon monoxide (CO) molecules on a Ru(0001) surface following femtosecond optical laser pump excitation has been studied by monitoring changes in the unoccupied electronic structure using an ultrafast X-ray free-electron laser (FEL) probe. The particular symmetry of perpendicularly chemisorbed CO on the surface is exploited to investigate how the molecular orientation changes with time by varying the polarization of the FEL pulses. The time evolution of spectral features corresponding to the desorption precursor state was well distinguished due to the narrow line-width of the C K-edge in the X-ray absorption (XA) spectrum, illustrating that CO molecules …


Seasonal Origins Of Soil Water Used By Trees, Scott T. Allen, James W. Kirchner, Sabine Braun, Rolf T. W. Siegwolf, Gregory R. Goldsmith Mar 2019

Seasonal Origins Of Soil Water Used By Trees, Scott T. Allen, James W. Kirchner, Sabine Braun, Rolf T. W. Siegwolf, Gregory R. Goldsmith

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Rain recharges soil water storages and either percolates downward into aquifers and streams or is returned to the atmosphere through evapotranspiration. Although it is commonly assumed that summer rainfall recharges plant-available water during the growing season, the seasonal origins of water used by plants have not been systematically explored. We characterize the seasonal origins of waters in soils and trees by comparing their midsummer isotopic signatures (δ2H) to seasonal isotopic cycles in precipitation, using a new seasonal origin index. Across 182 Swiss forest sites, xylem water isotopic signatures show that summer rain was not the predominant water source …


Vibrational Analysis Of A Rate-Slowing Conformational Kinetic Isotope Effect, O. Maduka Ogba, Zichen Liu, Daniel J. O'Leary Dec 2018

Vibrational Analysis Of A Rate-Slowing Conformational Kinetic Isotope Effect, O. Maduka Ogba, Zichen Liu, Daniel J. O'Leary

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

An enthalpy-entropy approach to analyzing a rate-slowing conformational kinetic isotope effect (CKIE) in a deuterated doubly-bridged biaryl system is described. The computed isotope effect (kH/kD = 1.075, 368 K) agrees well with the measured value (kH/kD = 1.06, 368 K). The rateslowing (normal isotope effect) nature of the computed CKIE is shown to originate from a vibrational entropy contribution defined by the twenty lowest frequency normal modes in the ground state and transition state structures. This normal entropy contribution is offset by an inverse vibrational enthalpy contribution, which also arises from the twenty lowest frequency normal modes. Zero point vibrational …


Atom-Specific Activation In Co Oxidation, Simon Schreck, Elias Diesen, Jerry Larue, Hirohito Ogasawara, Kess Marks, Dennis Nordlund, Matthew Weston, Martin Beye, Filippo Cavalca, Fivos Perakis, Jonas Sellberg, André Eilert, Kyung Hwan Kim, Giacomo Coslovich, Ryan Coffee, Jacek Krzywinski, Alex Reid, Stefan Moeller, Alberto Lutman, Henrik Öström, Lars G. M. Pettersson, Anders Nilsson Dec 2018

Atom-Specific Activation In Co Oxidation, Simon Schreck, Elias Diesen, Jerry Larue, Hirohito Ogasawara, Kess Marks, Dennis Nordlund, Matthew Weston, Martin Beye, Filippo Cavalca, Fivos Perakis, Jonas Sellberg, André Eilert, Kyung Hwan Kim, Giacomo Coslovich, Ryan Coffee, Jacek Krzywinski, Alex Reid, Stefan Moeller, Alberto Lutman, Henrik Öström, Lars G. M. Pettersson, Anders Nilsson

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

We report on atom-specific activation of CO oxidation on Ru(0001) via resonant X-ray excitation. We show that resonant 1s core-level excitation of atomically adsorbed oxygen in the co-adsorbed phase of CO and oxygen directly drives CO oxidation. We separate this direct resonant channel from indirectly driven oxidation via X-ray induced substrate heating. Based on density functional theory calculations, we identify the valence-excited state created by the Auger decay as the driving electronic state for direct CO oxidation. We utilized the fresh-slice multi-pulse mode at the Linac Coherent Light Source that provided time-overlapped and 30 fs delayed pairs of soft …


Isolation Of Rna From A Mixture And Its Detection By Utilizing A Microgel-Based Optical Device, Molla R. Islam, Shakiba Azimi, Faranak Teimoory, Glen Loppnow, Michael J. Serpe Sep 2018

Isolation Of Rna From A Mixture And Its Detection By Utilizing A Microgel-Based Optical Device, Molla R. Islam, Shakiba Azimi, Faranak Teimoory, Glen Loppnow, Michael J. Serpe

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

In this investigation, we show that RNA can be separated from a solution containing DNA and RNA and the isolated RNA can be detected using poly (N-isopropylacrylamide-co-N-(3-aminopropyl) methacrylamide hydrochloride) microgel-based optical devices (etalons). The isolation of RNA was accomplished by using hairpin-functionalized magnetic beads (MMPDNA) and differential melting, based on the fact that the DNA–RNA hybrid duplex is stronger (i.e., high melting temperature) than the DNA–DNA duplex (i.e., low melting temperature). By performing concurrent etalon sensing and fluorescent studies, we found that the MMPDNA combined with differential melting was capable of selectively separating RNA from DNA. This selective separation and …


1h And 13c Nmr Assignments For (N-Methyl)-(−)-(Α)-Isosparteinium Iodide And (N-Methyl)-(−)-Sparteinium Iodide, Kavoos Kolahdouzan, O. Maduka Ogba, Daniel J. O'Leary Aug 2018

1h And 13c Nmr Assignments For (N-Methyl)-(−)-(Α)-Isosparteinium Iodide And (N-Methyl)-(−)-Sparteinium Iodide, Kavoos Kolahdouzan, O. Maduka Ogba, Daniel J. O'Leary

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

(‒)-Sparteine (1) and (–)-(α)-isosparteine (2) are members of the lupine alkaloid family.[1-2] Sparteine has found extensive use in asymmetric organic transformations, including lithiations[3] and Pd-catalyzed oxidations.[4-7] (α)-Isosparteine, which can be made from sparteine, has been utilized as a chiral ligand for a limited number of stereoselective reactions.[8-9] The two compounds differ in that 1 displays an exo-endo arrangement of the bridgehead hydrogens at C-11 and C-6, respectively, while 2 retains an exo-exo arrangement of these atoms (Figure 1). This study is focused on assigning 1H chemical shifts and coupling constants and 13C chemical shifts for N-methyl …


Microgel Core/Shell Architectures As Targeted Agents For Fibrinolysis, Purva Kodlekere, L. Andrew Lyon Jun 2018

Microgel Core/Shell Architectures As Targeted Agents For Fibrinolysis, Purva Kodlekere, L. Andrew Lyon

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

We demonstrate the utility of microgel core/shell structures conjugated to fibrin-specific peptides as fibrinolytic agents. Poly(N-isopropylmethacrylamide) (pNIPMAm) based microgels conjugated to the peptide GPRPFPAC (GPRP) were observed to bring about fibrin clot erosion, merely through exploitation of the dynamic nature of the clots. These results suggest the potential utility of peptide–microgel hybrids in clot disruption and clotting modulation.


Predicting Spatial Patterns In Precipitation Isotope (Δ2h And Δ18o) Seasonality Using Sinusoidal Isoscapes, Scott T. Allen, James W. Kirchner, Gregory R. Goldsmith May 2018

Predicting Spatial Patterns In Precipitation Isotope (Δ2h And Δ18o) Seasonality Using Sinusoidal Isoscapes, Scott T. Allen, James W. Kirchner, Gregory R. Goldsmith

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Understanding how precipitation isotopes vary spatially and temporally is important for tracer applications. We tested how well month‐to‐month variations in precipitation δ18O and δ2H were captured by sinusoidal cycles, and how well spatial variations in these seasonal cycles could be predicted, across Switzerland. Sine functions representing seasonal cycles in precipitation isotopes explained between 47% and 94% of the variance in monthly δ18O and δ2H values at each monitoring site. A significant sinusoidal cycle was also observed in line‐conditioned excess. We interpolated the amplitudes, phases, and offsets of these sine functions across the landscape, using multiple linear …