Open Access. Powered by Scholars. Published by Universities.®

Other Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 93

Full-Text Articles in Other Chemistry

Enzyme Encapsulation Within The Hk97 Virus-Like Particle: An Investigation Of Substrate Inhibition Kinetics Within A Confined And Crowded Environment, Joseph B. Lively Oct 2024

Enzyme Encapsulation Within The Hk97 Virus-Like Particle: An Investigation Of Substrate Inhibition Kinetics Within A Confined And Crowded Environment, Joseph B. Lively

Chemistry Theses

Substrate inhibition is a paradoxical phenomenon observed in enzyme kinetics where increasing substrate concentrations lead to a marked decrease in the rates of enzyme-catalyzed reactions. Affecting an estimated 20% of studied enzymes, substrate inhibition poses significant challenges to the understanding of their function in essential biological processes and to their exploitation in industrial and therapeutic contexts. Studies show substrate inhibition to be a real limitation in vitro and rational conclusions have been drawn to explain the relevance of substrate inhibition in the self-regulation of biological pathways. However, there is currently no consensus on what role substrate inhibition plays in vivo …


The Purification And Thermal Stability Of The Peroxidase Enzyme In Cucurbita Moschata, Garen Hamner Apr 2024

The Purification And Thermal Stability Of The Peroxidase Enzyme In Cucurbita Moschata, Garen Hamner

Senior Honors Theses

Peroxidases are enzymes that catalyze the reduction of hydrogen peroxide to water while oxidizing organic substrates and are valuable in spheres like industrial and medical applications and histochemistry. Limitations still exist in the use of the well-studied horseradish peroxidase for certain activities due to limitations like poor thermal stability, thus the search for novel peroxidases that can overcome these limitations is an active area of research. Butternut squash peroxidase (Cucurbita moschata) (BSP) shows promise due to significant activity being found in the skin and apparent enhanced thermal stability, but an efficient purification scheme for it is lacking, as well as …


Mutational Analysis Of The Nitrogenase Carbon Monoxide Protective Protein Cown Reveals That A Conserved C‑Terminal Glutamic Acid Residue Is Necessary For Its Activity, Dustin L. Willard, Joshuah J. Arellano, Mitch Underdahl, Terrence M. Lee, Avinash S. Ramaswamy, Gabriella Fumes, Agatha Kliman, Emily Y. Wong, Cedric P. Owens Dec 2023

Mutational Analysis Of The Nitrogenase Carbon Monoxide Protective Protein Cown Reveals That A Conserved C‑Terminal Glutamic Acid Residue Is Necessary For Its Activity, Dustin L. Willard, Joshuah J. Arellano, Mitch Underdahl, Terrence M. Lee, Avinash S. Ramaswamy, Gabriella Fumes, Agatha Kliman, Emily Y. Wong, Cedric P. Owens

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Nitrogenase is the only enzyme that catalyzes the reduction of nitrogen gas into ammonia. Nitrogenase is tightly inhibited by the environmental gas carbon monoxide (CO). Many nitrogen fixing bacteria protect nitrogenase from CO inhibition using the protective protein CowN. This work demonstrates that a conserved glutamic acid residue near the C-terminus of Gluconacetobacter diazotrophicus CowN is necessary for its function. Mutation of the glutamic acid residue abolishes both CowN’s protection against CO inhibition and the ability of CowN to bind to nitrogenase. In contrast, a conserved C-terminal cysteine residue is not important for CO protection by CowN. Overall, this work …


Structural Control Of Metallothionein Metallation And Oxidation, Natalie C. Korkola Sep 2023

Structural Control Of Metallothionein Metallation And Oxidation, Natalie C. Korkola

Electronic Thesis and Dissertation Repository

Metallothioneins (MT) are a family of cysteine-rich metal-binding intrinsically disordered proteins that are ubiquitous across life. The proposed functions of MTs are to maintain Zn(II) homeostasis, participate in heavy metal detoxification, and protect against oxidative stress by binding to a variety of metals in a range of stoichiometries. However, due to their disordered nature and ability to form multiple metallated species, these diverse structures are not well characterized. Electrospray ionization mass spectrometry (ESI-MS) is a technique that allows quantification of heterogeneous metallation states through analysis of the speciation distributions. In this thesis, ESI-MS in combination with other spectroscopic techniques is …


Structural Integrity And Stability Of Dna In Ionic Liquid And Near-Infrared Indolizine Squaraine Dye, Ember Yeji Suh May 2023

Structural Integrity And Stability Of Dna In Ionic Liquid And Near-Infrared Indolizine Squaraine Dye, Ember Yeji Suh

Honors Theses

Luminol, the most common presumptive test for blood at a crime scene, has multiple issues, such as false positive results with chemical agents, no luminescence due to “active oxygen” cleaning agents on bloodstains, and inability to penetrate textile materials. A combination of indolizine squaraine dye and ionic liquid (IL), or Dye Enhanced Textile Emission for Crime Tracking (DETECT), have shown potential to address these issues. The purpose of this study was to assess the binding mechanism of CG (1:1) and SO3SQ dye to HSA and how the mechanism can explain the W214 fluorescence quenching effect and to determine …


Arginine Methylation Of The Pgc-1Α C‑Terminus Is Temperature- Dependent, Meryl Mendoz, Mariel Mendoza, Tiffany Lubrino, Sidney Briski, Immaculeta Osuji, Janielle Cuala, Brendan Ly, Ivan Ocegueda, Harvey Peralta, Benjamin A. Garcia, Cecilia Zurita-Lopez Dec 2022

Arginine Methylation Of The Pgc-1Α C‑Terminus Is Temperature- Dependent, Meryl Mendoz, Mariel Mendoza, Tiffany Lubrino, Sidney Briski, Immaculeta Osuji, Janielle Cuala, Brendan Ly, Ivan Ocegueda, Harvey Peralta, Benjamin A. Garcia, Cecilia Zurita-Lopez

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

We set out to determine whether the C-terminus (amino acids 481–798) of peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α, UniProt Q9UBK2), a regulatory metabolic protein involved in mitochondrial biogenesis, and respiration, is an arginine methyltransferase substrate. Arginine methylation by protein arginine methyltransferases (PRMTs) alters protein function and thus contributes to various cellular processes. In addition to confirming methylation of the C-terminus by PRMT1 as described in the literature, we have identified methylation by another member of the PRMT family, PRMT7. We performed in vitro methylation reactions using recombinant mammalian PRMT7 and PRMT1 at 37, 30, 21, 18, and 4 °C. …


A Protein-Based Therapeutic Combination For The Treatment Of Hard-To-Heal Wounds, Graham L. Strauss Jul 2022

A Protein-Based Therapeutic Combination For The Treatment Of Hard-To-Heal Wounds, Graham L. Strauss

USF Tampa Graduate Theses and Dissertations

Chronic wounds present many clinical challenges in relation to the successful treatment and closure of the damaged tissue. Most current treatment methods focused on one or two aspects to drive wound closure, while most chronic wounds are multifactorial environments with many of those dependencies relying on the termination of one another to effectively gain tissue construction, closure, and full skin thickness and composition. Natural wound healing processes allude to potential biologics that can impede the chronic breakdown of tissue, while restoring deposition of new tissue, and effectively leading to a healed wound. Proteases secreted by the body’s immune system lay …


Ketal-Azaborine Versus Ketal-Azaborine With A Spacer: Structural Effects On The Photophysical Properties Of Tunable Heteroaromatic Polycyclic Chromophores, Albert Campbell, Janiyah Riley, Samuel Moore, Albert Campbell Apr 2022

Ketal-Azaborine Versus Ketal-Azaborine With A Spacer: Structural Effects On The Photophysical Properties Of Tunable Heteroaromatic Polycyclic Chromophores, Albert Campbell, Janiyah Riley, Samuel Moore, Albert Campbell

Symposium of Student Scholars

Flat-structured heteroaromatic polycyclic compounds with extended conjugated π-systems such as azaborines are in high demand in the material and imaging technology markets because of their unique features such as simultaneous tunability of fluorescence color and intensity. We have designed, synthesized, and investigated a series of novel conjugated thermally stable ketal-azaborine chromophores that contain a phenyl ring as a spacer between electronic moieties and the ketal-azaborine core as easily tunable high-luminescent organic materials. We investigated the impact of the phenyl spacer on the ketal-azaborine unit. We examined the structural effects on their photophysical properties by incorporating electron –donating and –withdrawing substituents …


Azaborine Versus Azaborine With A Spacer: Structural Effects On The Photophysical Properties Of Tunable Azaborine Chromophores, Kaia Ellis, Janiyah Riley, Lyric Gordon, Janiyah Riley Apr 2022

Azaborine Versus Azaborine With A Spacer: Structural Effects On The Photophysical Properties Of Tunable Azaborine Chromophores, Kaia Ellis, Janiyah Riley, Lyric Gordon, Janiyah Riley

Symposium of Student Scholars

Azaborines are fascinating compounds because of their valuable and interesting optical properties making them suitable to be utilized in many optoelectronic devices. We have designed, synthesized, and investigated a series of novel conjugated thermally stable azaborine chromophores by incorporating a phenyl ring as a spacer linking the chromophore to different electronic moieties as easily tunable high-luminescent organic materials. We investigated the effect of the phenyl spacer on the azaborine unit. The substituent effects of different electronic moieties were investigated by the insertion of electron –withdrawing and –donating moieties to the phenyl spacer. We examined the role of the electron –donating …


1st Place Contest Entry: Designing Hollow Nanogels For Drug Delivery Applications, Mo Hijazi Apr 2022

1st Place Contest Entry: Designing Hollow Nanogels For Drug Delivery Applications, Mo Hijazi

Kevin and Tam Ross Undergraduate Research Prize

This is Mo Hijazi's submission for the 2022 Kevin and Tam Ross Undergraduate Research Prize, which won first place. It contains their essay on using library resources, their bibliography, and a summary of their research project on hollow-core nanogels.

Mo is a second-year student at Chapman University, majoring in Biological Sciences. Their faculty mentor is Dr. Molla Islam.


Escherichia Coli Alanyl-Trna Synthetase Maintains Proofreading Activity And Translational Accuracy Under Oxidative Stress, Arundhati Kavoor, Paul Kelly, Michael Ibba Feb 2022

Escherichia Coli Alanyl-Trna Synthetase Maintains Proofreading Activity And Translational Accuracy Under Oxidative Stress, Arundhati Kavoor, Paul Kelly, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Aminoacyl-tRNA synthetases (aaRSs) are enzymes that synthesize aminoacyl-tRNAs to facilitate translation of the genetic code. Quality control by aaRS proofreading and other mechanisms maintains translational accuracy, which promotes cellular viability. Systematic disruption of proofreading, as recently demonstrated for alanyl-tRNA synthetase (AlaRS), leads to dysregulation of the proteome and reduced viability. Recent studies showed that environmental challenges such as exposure to reactive oxygen species can also alter aaRS synthetic and proofreading functions, prompting us to investigate if oxidation might positively or negatively affect AlaRS activity. We found that while oxidation leads to modification of several residues in Escherichia coli AlaRS, unlike …


Characterization Of Cyclopropyl Synthases Involved In The Maturation Of Ribosomally Synthesized And Posttranslationally Modified Peptides, Yi Lien Jan 2022

Characterization Of Cyclopropyl Synthases Involved In The Maturation Of Ribosomally Synthesized And Posttranslationally Modified Peptides, Yi Lien

Electronic Theses and Dissertations

Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a large class of natural products with significant human health implications. RiPPs are synthesized from a genetically encoded precursor peptide that undergoes significant modifications by maturing enzymes, or maturases. Recently, radical-S-adenosylmethionine (rSAM) enzymes have emerged as an important family of RiPP maturases. rSAM enzymes have been shown to install ether, thioether, and carbon-carbon bonds on the precursor peptide. These modifications usually define the backbone structure of the mature RiPP. This thesis describes the characterization of a novel RiPP modification catalyzed by the radical S-adenosylmethionine enzyme TigE. TigE belongs to the TIG biosynthetic …


Aptamer-Based Voltammetric Biosensing For The Detection Of Codeine And Fentanyl In Sweat And Saliva, Rosa Lashantez Cromartie Nov 2021

Aptamer-Based Voltammetric Biosensing For The Detection Of Codeine And Fentanyl In Sweat And Saliva, Rosa Lashantez Cromartie

FIU Electronic Theses and Dissertations

Despite the many governmental and medicinal restrictions created to combat the opioid epidemic in the United States, opioid abuse and overdose rates continue to rise. The development of an aptamer-based voltammetric sensor and biosensor is described in this dissertation. The aim was to develop a low-cost, sensitive, and specific aptamer-based sensor for on-site, label-free determination of codeine and fentanyl in biological fluids. To do this, the surfaces of screen-printed carbon electrodes (SPCE) were modified with gold nanoparticles (AuNPs), followed by the addition of single-stranded DNA aptamers. These were covalently bound to the electrode surface. Operations of the sensors were collected …


A Nosy Neighbor: Purification And Functional Characterization Of Lpg2149, Ashley M. Holahan Oct 2021

A Nosy Neighbor: Purification And Functional Characterization Of Lpg2149, Ashley M. Holahan

The Journal of Purdue Undergraduate Research

Ubiquitination is a process that marks proteins for various cell-signaling pathways, namely protein degradation and other processes. Th ese pathways are essential in a wide array of cellular processes, including defense mechanisms against invading pathogens. Th e ubiquitination process is universally found in all eukaryotic organisms, including plants and animals, and thus plays a vital role in cellular homeostasis. Recently, more discoveries have been made on prokaryotic effector proteins that hijack the ubiquitination system even when they do not possess a ubiquitin system of their own. MavC, also known as lpg2147 (Gan, Nakayasu, Hollenbeck, & Luo, 2019; Puvar et al., …


Oxidation Alters The Architecture Of The Phenylalanyl-Trna Synthetase Editing Domain To Confer Hyperaccuracy, Pooja Srinivas, Rebecca E. Steiner, Ian J. Pavelich, Ricardo Guerrera-Ferreira, Puneet Juneja, Michael Ibba, Christine M. Dunham Sep 2021

Oxidation Alters The Architecture Of The Phenylalanyl-Trna Synthetase Editing Domain To Confer Hyperaccuracy, Pooja Srinivas, Rebecca E. Steiner, Ian J. Pavelich, Ricardo Guerrera-Ferreira, Puneet Juneja, Michael Ibba, Christine M. Dunham

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

High fidelity during protein synthesis is accomplished by aminoacyl-tRNA synthetases (aaRSs). These enzymes ligate an amino acid to a cognate tRNA and have proofreading and editing capabilities that ensure high fidelity. Phenylalanyl-tRNA synthetase (PheRS) preferentially ligates a phenylalanine to a tRNAPhe over the chemically similar tyrosine, which differs from phenylalanine by a single hydroxyl group. In bacteria that undergo exposure to oxidative stress such as Salmonella enterica serovar Typhimurium, tyrosine isomer levels increase due to phenylalanine oxidation. Several residues are oxidized in PheRS and contribute to hyperactive editing, including against mischarged Tyr-tRNAPhe, despite these oxidized residues not …


Don't Sell Them Short, There's More To Bacterial Natural Products Than Antibiotics, Alison Clare Domzalski Sep 2021

Don't Sell Them Short, There's More To Bacterial Natural Products Than Antibiotics, Alison Clare Domzalski

Dissertations, Theses, and Capstone Projects

Recent genomic studies of microbiomes have revealed an overwhelming number of biosynthetic genes of unknown function. Most of these “cryptic” biosynthetic genes are not expressed in laboratory monocultures of individual microbes. Thus, there remains tremendous untapped potential for natural products discovery. Here we employ mixed microbial culture (MMC) as a simple yet powerful approach to awaken cryptic biosynthetic gene clusters. Our preliminary studies demonstrated that arrays of metabolites could be induced in MMCs upon environmental cues, such as surface adhesion. Using this system, we have screened, identified, and isolated bioactive bacterial metabolites, which were characterized structurally and biologically. Of the …


Stimuli Responsive Dye-Containing Peg-Pla Block Copolymer Micelles And Computationally Assisted Design Of A Stapled Peptide Bundle, Tyler L. Odom Aug 2021

Stimuli Responsive Dye-Containing Peg-Pla Block Copolymer Micelles And Computationally Assisted Design Of A Stapled Peptide Bundle, Tyler L. Odom

MSU Graduate Theses

In this thesis, I report the preparation and characterization of dye-containing PEG-b-PLA block copolymer micelles and the computational design of a novel coiled-coil peptide bundle. The PEG-b-PLA micelles encapsulate hydrophobic molecules into their core and have strong potential as nanocontainers or delivery vesicles. In theory, these internalized molecules can be released upon exposure to mechanical forces that disrupt the micellar structures. This force-responsive nature is one of the inherent properties of micellar systems. However, there is a stark lack of research that utilize this property in applications. Along those lines, I have studied the behavior of …


Computational Analysis Of Type 3 Iodothyronine Deiodinase: Potential Inhibitors, Substrate Binding, And Dimer Structure, Eric Scott Marsan Jul 2021

Computational Analysis Of Type 3 Iodothyronine Deiodinase: Potential Inhibitors, Substrate Binding, And Dimer Structure, Eric Scott Marsan

Chemistry & Biochemistry Theses & Dissertations

Thyroid hormones (THs) in mammalian tissues are crucial for development and maintaining metabolic homeostasis. Iodothyronine deiodinases (Dios) remove iodines from THs by a selenocysteine (Sec) residue, which either activates or inactivates them. Halogen bonding (XB) has been proposed to describe the interaction between the Se and I atoms of the T4-Dio complex. Disruption of TH homeostasis by xenobiotics, such as polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) can cause deleterious effects on the endocrine system. Experimental studies have indicated that PBDEs and PCBs could disrupt TH homeostasis by inhibiting Dio through XB formation. However, no current quantitative study exists …


Purine Nucleosides Modified At C8 Or C2 Position With (Β-Halo)Vinylsulfone And Β-Ketosulfone Reactive Groups And Their Incorporation Into Dna: Synthesis Of The Organoarsenical Antibiotic Arsinothricin And Polyaromatic Hydrocarbons, Md Abu Hasan Howlader Jun 2021

Purine Nucleosides Modified At C8 Or C2 Position With (Β-Halo)Vinylsulfone And Β-Ketosulfone Reactive Groups And Their Incorporation Into Dna: Synthesis Of The Organoarsenical Antibiotic Arsinothricin And Polyaromatic Hydrocarbons, Md Abu Hasan Howlader

FIU Electronic Theses and Dissertations

Modified nucleosides gained great attention as potential anticancer and antiviral therapeutics. In this dissertation, synthesis and reactivity of (β-iodovinyl)sulfone and β-ketosulfone groups incorporated into purine nucleosides at C8 or C2 positions and DNA incorporation of their 5' triphosphates have been developed. Moreover, synthesis of novel antibiotic arsinothricin (AST) as well as polycyclic aromatic hydrocarbons (PAHs) have been discussed. The 8-(1-iodo-2-tosylvinyl)-2'-deoxyadenosine and 8-(1-Iodo-2-tosylvinyl)adenosine were synthesized employing iodovinylsulfonation of 8-ethynyl precursors with TsNa/I2/NaOAc. The 8-(β-iodovinyl)sulfonyl-2'-deoxyguanosine was prepared via radical mediated iodovinylsulfonation of 8-ethynyl-2'-deoxyguanosine with TsNHNH2/KI/(BzO)2. Conformationally different C2 substituted isomeric adenosine analogues were prepared by iodovinylsulfonation …


Computational Modeling Of Water And Proteins In Drug Discovery, Anthony Cruz Balberdy Jun 2021

Computational Modeling Of Water And Proteins In Drug Discovery, Anthony Cruz Balberdy

Dissertations, Theses, and Capstone Projects

This thesis aims to improve how structural and thermodynamic properties of water on protein surfaces can be exploited to aid early stage drug discovery and lead optimization. We first discuss our development of SSTMap, a public domain software suite that maps out the properties of water on biomolecular surfaces. We then show the utility of these maps in describing differences in binding affinities between congeneric pairs of ligands. We then discuss our use of solvation maps in the prospective discovery of novel binders to cytochrome C peroxidase. Finally, we present our creation and validation of a homology model of Interleukin-24 …


Studies Of The Rectification Behavior Of The Pdt Ligand And The Active Site Of Msrp, Laura J. Ingersol Apr 2021

Studies Of The Rectification Behavior Of The Pdt Ligand And The Active Site Of Msrp, Laura J. Ingersol

Chemistry and Chemical Biology ETDs

Molybdenum (Mo) is an essential element that plays an important role in global nitrogen, carbon, and sulfur cycles with a critical role in human metabolism and ecological balance. It becomes catalytically active when complexed with the pyranopterin dithiolene ligand (PDT), forming the nearly ubiquitous molybdenum cofactor (Moco). The complex biosynthetic pathway of Moco, its presence in all three domains of life, and its role as a constituent cofactor in the last universal common ancestor (LUCA) all point toward the importance of the PDT in the development of life on Earth. Molybdoenzymes catalyze the two-electron oxidation or reduction of substrates that …


Cown Sustains Nitrogenase Turnover In The Presence Of The Inhibitor Carbon Monoxide, Michael S. Medina, Kevin O. Bretzing, Richard A. Aviles, Kiersten M. Chong, Alejandro Espinoza, Chloe Nicole G. Garcia, Benjamin B. Katz, Ruchita N. Kharwa, Andrea Hernandez, Justin L. Lee, Terrence M. Lee, Christine Lo Verde, Max W. Strul, Emily Y. Wong, Cedric P. Owens Mar 2021

Cown Sustains Nitrogenase Turnover In The Presence Of The Inhibitor Carbon Monoxide, Michael S. Medina, Kevin O. Bretzing, Richard A. Aviles, Kiersten M. Chong, Alejandro Espinoza, Chloe Nicole G. Garcia, Benjamin B. Katz, Ruchita N. Kharwa, Andrea Hernandez, Justin L. Lee, Terrence M. Lee, Christine Lo Verde, Max W. Strul, Emily Y. Wong, Cedric P. Owens

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Nitrogenase is the only enzyme capable of catalyzing nitrogen fixation, the reduction of dinitrogen gas (N2) to ammonia (NH3). Nitrogenase is tightly inhibited by the environmental gas carbon monoxide (CO). Nitrogen-fixing bacteria rely on the protein CowN to grow in the presence of CO. However, the mechanism by which CowN operates is unknown. Here, we present the biochemical characterization of CowN and examine how CowN protects nitrogenase from CO. We determine that CowN interacts directly with nitrogenase and that CowN protection observes hyperbolic kinetics with respect to CowN concentration. At a CO concentration of 0.001 atm, …


Transcriptional Repressor Protein Based Macrolide Biosensor Development With Improved Sensitivity, Jayani A. Christopher Jan 2021

Transcriptional Repressor Protein Based Macrolide Biosensor Development With Improved Sensitivity, Jayani A. Christopher

Graduate Research Posters

Macrolide antibiotics are in high demand for clinical applications. Macrolides are biosynthesized via giant assembly line polyketide synthases (PKS) which are arranged in a modular fashion. Combinatorial biosynthetic methods have been used to produce diversified macrolides by reprograming these modules and modifying tailoring enzymes required for post synthetic modifications. However it is challenging due to the size and complexity of PKSs. To overcome this challenge, new enzymes for macrolide diversification could be obtained by directed evolution where a large number of enzyme variants need to be screened. Therefore it is important to develop high throughput screening methods to identify the …


Validation Of A Deployable Proteomic Assay For The Serological Screening Of Sexual Assault Samples, Catherine O'Sullivan Brown Jan 2021

Validation Of A Deployable Proteomic Assay For The Serological Screening Of Sexual Assault Samples, Catherine O'Sullivan Brown

Electronic Theses and Dissertations

Protein mass spectrometry (MS) has emerged as a technique to supplant traditional serological tests for body fluid identification. It was hypothesized that proteomic techniques would surpass the sensitivity and specificity of traditional serological techniques. An automated workflow coupled with protein MS has been developed for the confirmatory identification of five biological fluids. A developmental validation was completed, assessing parameters such as reproducibility, sensitivity, ion suppression, and limit of detection. Implementation was determined through tandem sample processing by MS, traditional serological tests, and standard DNA profiling methods. The MS approach offered superior detection limits while also providing true confirmatory results, producing …


Development Of Computational Tools To Target Microrna, Luo Song Dec 2020

Development Of Computational Tools To Target Microrna, Luo Song

Dissertations & Theses (Open Access)

MicroRNAs (a.k.a, miRNAs) play an important role in disease development. However, few of their structures have been determined and structure-based computational methods remain challenging in accurately predicting their interactions with small molecules. To address this issue, my thesis is to develop integrated approaches to screening for novel inhibitors by targeting specific structure motifs in miRNAs. The project starts with implementing a tool to find potential miRNA targets with desired motifs. I combined both sequence information of miRNAs and known RNA structure data from Protein Data Bank (PDB) to predict the miRNA structure and identify the motif to target, then I …


Capsaicin Is A Negative Allosteric Modulator Of The 5-Ht3 Receptor, Eslam El Nebrisi, Tatiana Prytkova, Dietrich Ernst Lorke, Luke Howarth, Asma Hassan Alzaabi, Keun-Hang Susan Yang, Frank Christopher Howarth, Murat Oz Aug 2020

Capsaicin Is A Negative Allosteric Modulator Of The 5-Ht3 Receptor, Eslam El Nebrisi, Tatiana Prytkova, Dietrich Ernst Lorke, Luke Howarth, Asma Hassan Alzaabi, Keun-Hang Susan Yang, Frank Christopher Howarth, Murat Oz

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

In this study, effects of capsaicin, an active ingredient of the capsicum plant, were investigated on human 5-hydroxytryptamine type 3 (5-HT3) receptors. Capsaicin reversibly inhibited serotonin (5-HT)-induced currents recorded by two-electrode voltage clamp method in Xenopus oocytes. The inhibition was time- and concentration-dependent with an IC50 = 62 μM. The effect of capsaicin was not altered in the presence of capsazepine, and by intracellular BAPTA injections or trans-membrane potential changes. In radio-ligand binding studies, capsaicin did not change the specific binding of the 5-HT3 antagonist [3H]GR65630, indicating that it is a noncompetitive inhibitor of …


Investigating Chitosan Modified With Triethylammonium Butanamide And Triethylphosphonium Butanamide As Non-Viral Gene Delivery Vectors By Examining Cytotoxicity And Transfection Efficiency, Deborah C. Ehie Aug 2020

Investigating Chitosan Modified With Triethylammonium Butanamide And Triethylphosphonium Butanamide As Non-Viral Gene Delivery Vectors By Examining Cytotoxicity And Transfection Efficiency, Deborah C. Ehie

MSU Graduate Theses

Gene therapy is a very challenging field, especially with new emerging genetic disorders. Chitosan (CS), due to chitosan’s flexibility, biocompatibility, and biodegradability, has been of interest in the world of gene therapy especially as researchers are gravitating towards non-viral vectors due to the problems caused by viral vectors. Nevertheless, there are still issues regarding solubility, cellular uptake of cargos being transported in vitro or in vivo, increased cytotoxicity levels, as well as many other things that prevent chitosan from being an efficient gene delivery agent. Here I present five derivatives of chitosan, which were all modified with either triethylphosphonium …


Leaf Traits Can Be Used To Predict Rates Of Litter Decomposition, Marc Rosenfield, Jennifer L. Funk, Jason K. Keller, Catrina Clausen, Kimberlee Cyphers Jun 2020

Leaf Traits Can Be Used To Predict Rates Of Litter Decomposition, Marc Rosenfield, Jennifer L. Funk, Jason K. Keller, Catrina Clausen, Kimberlee Cyphers

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Strong relationships exist between litter chemistry traits and rates of litter decomposition. However, leaf traits are more commonly found in online trait databases than litter traits and fewer studies have examined how well leaf traits predict litter decomposition rates. Furthermore, while bulk leaf nitrogen (N) content is known to regulate litter decomposition, few studies have explored the importance of N biochemistry fractions, such as protein and amino acid concentration. Here, we decomposed green leaves and naturally senesced leaf litter of nine species representing a wide range of leaf functional traits. We evaluated the ability of traits associated with leaf and …


Effect Of Charged Lipids On The Ionization Behavior Of Glutamic Acid Containing Transmembrane Helices, Brooke Nunn May 2020

Effect Of Charged Lipids On The Ionization Behavior Of Glutamic Acid Containing Transmembrane Helices, Brooke Nunn

Chemistry & Biochemistry Undergraduate Honors Theses

Transmembrane proteins make up critical components of living cells. Protein function can be greatly impacted by the charged state of its respective components, the side chains of amino acid residues. Thus far, in the lipid membrane, little is known about the properties of residues such as glutamic acid. To explore these properties, I have included glutamic acid in a suitable model peptide-lipid system for fundamental biophysical experiments. Within the system, I have placed a glutamic acid residue instead of leucine in the L14 position of the helical hydrophobic peptide GWALP23 (acetyl-GGALWLALALALAL14ALALWLAGA-amide). Substitutions of glutamine and aspartic acid serve …


295— Biomimicry: Investigating The Active Site Model Of Lactate Racemase, Stephanie Podguski, Maisy Ross Apr 2020

295— Biomimicry: Investigating The Active Site Model Of Lactate Racemase, Stephanie Podguski, Maisy Ross

GREAT Day Posters

Because of humans’ heavy impact on nature with industrialization and resource extraction, biomimetics, also known as biomimicry, is a study that has emerged. Biomimetics utilizes observations from nature to comprehend the principles of underlying mechanisms and apply concepts that may benefit science, medicine, engineering and the like. An area of biochemistry we are applying this to is the lactate racemase enzyme.This metalloenzyme is found in many prokaryotic organisms and catalyzes the interconversion between the two optical isomers of lactic acid. The structure of this enzyme consists of a square-planar nickel (II) ion coordinated by a histidine residue and a pincer …