Open Access. Powered by Scholars. Published by Universities.®

Medicinal-Pharmaceutical Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Medicinal-Pharmaceutical Chemistry

Design And Synthesis Of Selective Estrogen Receptor Β Agonists And Their Pharmacology, K. L. Iresha Sampathi Perera Jul 2017

Design And Synthesis Of Selective Estrogen Receptor Β Agonists And Their Pharmacology, K. L. Iresha Sampathi Perera

Dissertations (1934 -)

Estrogens (17β-estradiol, E2) have garnered considerable attention in influencing cognitive process in relation to phases of the menstrual cycle, aging and menopausal symptoms. However, hormone replacement therapy can have deleterious effects leading to breast and endometrial cancer, predominantly mediated by estrogen receptor-alpha (ERα) the major isoform present in the mammary gland and uterus. Further evidence supports a dominant role of estrogen receptor-beta (ERβ) for improved cognitive effects such as enhanced hippocampal signaling and memory consolidation via estrogen activated signaling cascades. Creation of the ERβ selective ligands is challenging due to high structural similarity of both receptors. Thus far, several ERβ …


A Rational Design Of A Selective Inhibitor For Kv1.1 Channels Prevalent In Demyelinated Nerves That Improves Their Impaired Axonal Conduction, Ahmed Al-Sabi, Declan Daly, Patrick Hoefer, Gemma K. Kinsella, Charles Metais, Mark Pickering, Caroline Herron, Seshu Kumar Kaza, Kieran Nolan, J. Oliver Dolly Jan 2017

A Rational Design Of A Selective Inhibitor For Kv1.1 Channels Prevalent In Demyelinated Nerves That Improves Their Impaired Axonal Conduction, Ahmed Al-Sabi, Declan Daly, Patrick Hoefer, Gemma K. Kinsella, Charles Metais, Mark Pickering, Caroline Herron, Seshu Kumar Kaza, Kieran Nolan, J. Oliver Dolly

Articles

K+ channels containing Kv1.1 α subunits, which become prevalent at internodes in demyelinated axons, may underlie their dysfunctional conduction akin to muscle weakness in multiple sclerosis. Small inhibitors were sought with selectivity for the culpable hyper-polarizing K+ currents. Modeling of interactions with the extracellular pore in a Kv1.1-deduced structure identified diaryldi(2-pyrrolyl)methane as a suitable scaffold with optimized alkyl ammonium side chains. The resultant synthesized candidate [2,2′-((5,5′(di-p-topyldiaryldi(2-pyrrolyl)methane)bis(2,2′carbonyl)bis(azanediyl)) diethaneamine·2HCl] (8) selectively blocked Kv1.1 channels (IC50 ≈ 15 μM) recombinantly expressed in mammalian cells, induced a positive shift in the voltage dependency of K+ current activation, and slowed its kinetics. It …