Open Access. Powered by Scholars. Published by Universities.®

Medicinal-Pharmaceutical Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Medicinal-Pharmaceutical Chemistry

Fluoroethoxy-1,4-Diphenethylpiperidine And Piperazine Derivatives: Potent And Selective Inhibitors Of [3H]Dopamine Uptake At The Vesicular Monoamine Transporter-2, Emily R. Hankosky, Shyam R. Joolakanti, Justin R. Nickell, Venumadhav Janganati, Linda P. Dwoskin, Peter A. Crooks Dec 2017

Fluoroethoxy-1,4-Diphenethylpiperidine And Piperazine Derivatives: Potent And Selective Inhibitors Of [3H]Dopamine Uptake At The Vesicular Monoamine Transporter-2, Emily R. Hankosky, Shyam R. Joolakanti, Justin R. Nickell, Venumadhav Janganati, Linda P. Dwoskin, Peter A. Crooks

Pharmaceutical Sciences Faculty Publications

A small library of fluoroethoxy-1,4-diphenethyl piperidine and fluoroethoxy-1,4-diphenethyl piperazine derivatives were designed, synthesized and evaluated for their ability to inhibit [3H]dopamine (DA) uptake at the vesicular monoamine transporter-2 (VMAT2) and dopamine transporter (DAT), [3H]serotonin (5-HT) uptake at the serotonin transporter (SERT), and [3H]dofetilide binding at the human-ether-a-go-go-related gene (hERG) channel. The majority of the compounds exhibited potent inhibition of [3H]DA uptake at VMAT2, with Ki values in the nanomolar range (Ki = 0.014–0.073 μM). Compound 15d exhibited the highest affinity (Ki = 0.014 μM) at VMAT2, and had 160-, 5-, …


Design, Synthesis, And Biological Activity Of 5'-Phenyl-1,2,5,6-Tetrahydro-3,3'-Bipyridine Analogues As Potential Antagonists Of Nicotinic Acetylcholine Receptors, Yafei Jin, Xiaoqin Huang, Roger L. Papke, Emily M. Jutkiewicz, Hollis D Showalter, Chang-Guo Zhan Sep 2017

Design, Synthesis, And Biological Activity Of 5'-Phenyl-1,2,5,6-Tetrahydro-3,3'-Bipyridine Analogues As Potential Antagonists Of Nicotinic Acetylcholine Receptors, Yafei Jin, Xiaoqin Huang, Roger L. Papke, Emily M. Jutkiewicz, Hollis D Showalter, Chang-Guo Zhan

Pharmaceutical Sciences Faculty Publications

Starting from a known non-specific agonist (1) of nicotinic acetylcholine receptors (nAChRs), rationally guided structural-based design resulted in the discovery of a small series of 5′-phenyl-1,2,5,6-tetrahydro-3,3′-bipyridines (3a – 3e) incorporating a phenyl ring off the pyridine core of 1. The compounds were synthesized via successive Suzuki couplings on a suitably functionalized pyridine starting monomer 4 to append phenyl and pyridyl substituents off the 3- and 5-positions, respectively, and then make subsequent modifications on the flanking pyridyl ring to provide target compounds. Compound 3a is a novel antagonist which is highly selective for α3β4 nAChR (Ki = 123 nM) …


Selective Inhibitors Of Human Mpges-1 From Structure-Based Computational Screening, Ziyuan Zhou, Yaxia Yuan, Shuo Zhou, Kai Ding, Fang Zheng, Chang-Guo Zhan Aug 2017

Selective Inhibitors Of Human Mpges-1 From Structure-Based Computational Screening, Ziyuan Zhou, Yaxia Yuan, Shuo Zhou, Kai Ding, Fang Zheng, Chang-Guo Zhan

Molecular Modeling and Biopharmaceutical Center Faculty Publications

Human mPGES-1 is recognized as a promising target for next generation of anti-inflammatory drugs. Although various mPGES-1 inhibitors have been reported in literature, few have entered clinical trials and none has been proven clinically useful so far. It is highly desired for developing the next generation of therapeutics for inflammation-related diseases to design and discover novel inhibitors of mPGES-1 with new scaffolds. Here, we report the identification of a series of new, potent and selective inhibitors of human mPGES-1 with diverse scaffolds through combined computational and experimental studies. The computationally modeled binding structures of these new inhibitors with mPGES-1 provide …


Bis(N-Amidinohydrazones) And N-(Amidino)-N'-Aryl-Bishydrazones: New Classes Of Antibacterial/Antifungal Agents, Sanjib K. Shrestha, Liliia M. Kril, Keith D. Green, Stefan Kwiatkowski, Vitaliy M. Sviripa, Justin Robert Nickell, Linda Phyliss Dwoskin, David S. Watt, Sylvie Garneau-Tsodikova Jan 2017

Bis(N-Amidinohydrazones) And N-(Amidino)-N'-Aryl-Bishydrazones: New Classes Of Antibacterial/Antifungal Agents, Sanjib K. Shrestha, Liliia M. Kril, Keith D. Green, Stefan Kwiatkowski, Vitaliy M. Sviripa, Justin Robert Nickell, Linda Phyliss Dwoskin, David S. Watt, Sylvie Garneau-Tsodikova

Pharmaceutical Sciences Faculty Publications

The emergence of multidrug-resistant bacterial and fungal strains poses a threat to human health that requires the design and synthesis of new classes of antimicr obial agents. We evaluated bis(N-amidinohydrazones) and N-(amidino)-N'-aryl-bishydrazones for their antibacterial and antifungal activities against panels of Gram-positive/Gram-negative bacteria as well as fungi. We investigated their potential to develop resistance against both bacteria and fungi by a multi-step, resistance-selection method, explored their potential to induce the production of reactive oxygen species, and assessed their toxicity. In summary, we found that these compounds exhibited broad-spectrum antibacterial and antifungal activities against most of …


Development Of Diverse Size And Shape Rna Nanoparticles And Investigation Of Their Physicochemical Properties For Optimized Drug Delivery, Daniel L. Jasinski Jan 2017

Development Of Diverse Size And Shape Rna Nanoparticles And Investigation Of Their Physicochemical Properties For Optimized Drug Delivery, Daniel L. Jasinski

Theses and Dissertations--Pharmacy

RNA nanotechnology is an emerging field that holds great promise for advancing drug delivery and materials science. Recently, RNA nanoparticles have seen increased use as an in vivo delivery system. RNA was once thought to have little potential for in vivo use due to biological and thermodynamic stability issues. However, these issues have been solved by: (1) Finding of a thermodynamically stable three-way junction (3WJ) motif; (2) Chemical modifications to RNA confer enzymatic stability in vivo; and (3) the finding that RNA nanoparticles exhibit low immunogenicity in vivo.

In vivo biodistribution and pharmacokinetics are affected by the physicochemical …