Open Access. Powered by Scholars. Published by Universities.®

Medicinal-Pharmaceutical Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 19 of 19

Full-Text Articles in Medicinal-Pharmaceutical Chemistry

Development And Validation Of A Liquid Chromatography-Tandem Mass Spectrometry Method For The Determination Of Temozolomide In Mouse Brain Tissue, Raghavi Kakarla, Kimberly Yacoub, Rebecca L. Bearden, Aimin Zhou, Sanjib Mukherjee, Frank Y. Shan, Baochuan Guo Apr 2023

Development And Validation Of A Liquid Chromatography-Tandem Mass Spectrometry Method For The Determination Of Temozolomide In Mouse Brain Tissue, Raghavi Kakarla, Kimberly Yacoub, Rebecca L. Bearden, Aimin Zhou, Sanjib Mukherjee, Frank Y. Shan, Baochuan Guo

Chemistry Faculty Publications

Temozolomide is a Food and Drug Administration-approved anticancer drug that has poor drug delivery via oral or intravenous routes. A potential strategy to combat this problem is investigating alternative routes of administration, requiring quantitation of the drug in the brain tissues by liquid chromatography-mass spectrometry. However, current methods used to extract the drug from brain tissues resulted in poor recovery and substantial matrix effects. Herein, we reported a new two-step extraction method that involves the use of Proteinase K to lyse tumor tissues to efficiently release the drug, followed by ethanol protein precipitation. The extracts were then separated on a …


A Novel Ibuprofen Derivative And Its Complexes: Physicochemical Characterization, Dft Modeling, Docking, In Vitro Anti-Inflammatory Studies, And Dna Interaction, Abbas M. Abbas, Ahmed Aboelmagd, Safaa M. Kishk, Hossam H. Nasrallah, W. Christropher Boyd, Haitham F. Kalil, Adel S. Orabi Nov 2022

A Novel Ibuprofen Derivative And Its Complexes: Physicochemical Characterization, Dft Modeling, Docking, In Vitro Anti-Inflammatory Studies, And Dna Interaction, Abbas M. Abbas, Ahmed Aboelmagd, Safaa M. Kishk, Hossam H. Nasrallah, W. Christropher Boyd, Haitham F. Kalil, Adel S. Orabi

Chemistry Faculty Publications

A novel derivative of ibuprofen and salicylaldehyde N '-(4-hydroxybenzylidene)-2-(4-isobutylphenyl) propane hydrazide (HL) was synthesized, followed by its complexation with Cu, Ni, Co, Gd, and Sm. The compounds obtained were characterized by (HNMR)-H-1, mass spectrometry, UV-Vis spectroscopy, FT-IR spectroscopy, thermal analysis (DTA and TGA), conductivity measurements, and magnetic susceptibility measurements. The results indicate that the complexes formed were [Cu(L)(H2O)]Cl center dot 2H(2)O, [Ni(L)(2)], [Co(L)(2)]center dot H2O, [Gd(L)(2)(H2O)(2)](NO3)center dot 2H(2)O and [Sm(L)(2)(H2O)(2)](NO3)center dot 2H(2)O. The surface characteristics of the produced compounds were evaluated by DFT calculations using the MOE environment. The docking was performed against the COX2 targeting protein (PDB code: 5IKT …


Sialidase Inhibitors With Different Mechanisms, Joseph M. Keil, Garrett R. Rafn, Isaac M. Turan, Majdi A. Aljohani, Reza Sahebjam-Atabaki, Xue-Long Sun Oct 2022

Sialidase Inhibitors With Different Mechanisms, Joseph M. Keil, Garrett R. Rafn, Isaac M. Turan, Majdi A. Aljohani, Reza Sahebjam-Atabaki, Xue-Long Sun

Chemistry Faculty Publications

Sialidases, or neuraminidases, are enzymes that catalyze the hydrolysis of sialic acid (Sia)-containing molecules, mostly removal of the terminal Sia (desialylation). By desialylation, sialidase can modulate the functionality of the target compound and is thus often involved in biological pathways. Inhibition of sialidases with inhibitors is an important approach for under-standing sialidase function and the underlying mechanisms and could serve as a therapeutic approach as well. Transition-state analogues, such as anti-influenza drugs oseltamivir and zanamivir, are major sialidase inhibitors. In addition, difluoro-sialic acids were developed as mechanism-based sialidase inhibitors. Further, fluorinated quinone methide-based suicide substrates were reported. Sialidase product analogue …


Network-Based Pharmacology Study Reveals Protein Targets For Medical Benefits And Harms Of Cannabinoids In Humans, Xingyu Li, Amit Madhukar Kudke, Felix Joseph Nepveux V, Yan Xu Feb 2022

Network-Based Pharmacology Study Reveals Protein Targets For Medical Benefits And Harms Of Cannabinoids In Humans, Xingyu Li, Amit Madhukar Kudke, Felix Joseph Nepveux V, Yan Xu

Chemistry Faculty Publications

This network-based pharmacology study intends to uncover the underlying mechanisms of cannabis leading to a therapeutic benefit and the pathogenesis for a wide range of diseases claimed to benefit from or be caused by the use of the cannabis plant. Cannabis contains more than 600 chemical components. Among these components, cannabinoids are well-known to have multifarious pharmacological activities. In this work, twelve cannabinoids were selected as active compounds through text mining and drug-like properties screening and used for initial protein-target prediction. The disease-associated biological functions and pathways were enriched through GO and KEGG databases. Various biological networks [i.e., protein-protein interaction, …


End-Point Modification Of Recombinant Thrombomodulin With Enhanced Stability And Anticoagulant Activity, Xia Liu, Mallorie Boron, Yu Zhao, Xue-Long Sun Nov 2019

End-Point Modification Of Recombinant Thrombomodulin With Enhanced Stability And Anticoagulant Activity, Xia Liu, Mallorie Boron, Yu Zhao, Xue-Long Sun

Chemistry Faculty Publications

Thrombomodulin (TM) is an endothelial cell membrane protein that plays essential roles in controlling vascular haemostatic balance. The 4, 5, 6 EGF-like domain of TM (TM456) has cofactor activity for thrombin binding and subsequently protein C activation. Therefore, recombinant TM456 is a promising anticoagulant candidate but has a very short half-life. Ligation of poly (ethylene glycol) to a bioactive protein (PEGylation) is a practical choice to improve stability, extend circulating life, and reduce immunogenicity of the protein. Site-specific PEGylation is preferred as it could avoid the loss of protein activity resulting from nonspecific modification. We report herein …


A Quantitative Lc-Ms/Ms Method For Determination Of A Small Molecule Agonist Of Epha2 In Mouse Plasma And Brain Tissue, Bo Zhong, Yaxin Li, Nethrie Idippily, Aaron Petty, Bin Su Ph.D., Bingcheng Wang Apr 2019

A Quantitative Lc-Ms/Ms Method For Determination Of A Small Molecule Agonist Of Epha2 In Mouse Plasma And Brain Tissue, Bo Zhong, Yaxin Li, Nethrie Idippily, Aaron Petty, Bin Su Ph.D., Bingcheng Wang

Chemistry Faculty Publications

Compound 27 {1, 12‐bis[4‐(4‐amino‐6,7‐dimethoxyquinazolin‐2‐yl)piperazin‐1‐yl]dodecane‐1,12‐dione} is a novel small molecule agonist of EphA2 receptor tyrosine kinase. It showed much improved activity for the activation of EphA2 receptor compared with the parental compound doxazosin. To support further pharmacological and toxicological studies of the compound, a method using liquid chromatography and electrospray ionization tandem mass spectrometry (LC–MS/MS) has been developed for the quantification of this compound. Liquid–liquid extraction was used to extract the compound from mouse plasma and brain tissue homogenate. Reverse‐phase chromatography with gradient elution was performed to separate compound 27 from the endogenous molecules in the matrix, followed by …


Tracking Decitabine Incorporation Into Malignant Myeloid Cell Dna In Vitro And In Vivo By Lc-Ms/Ms With Enzymatic Digestion, Sujatha Chilakala, Ye Feng, Lan Li, Reda Mahfouz, Ebrahem Quteba, Yogen Saunthararajah, Yan Xu Mar 2019

Tracking Decitabine Incorporation Into Malignant Myeloid Cell Dna In Vitro And In Vivo By Lc-Ms/Ms With Enzymatic Digestion, Sujatha Chilakala, Ye Feng, Lan Li, Reda Mahfouz, Ebrahem Quteba, Yogen Saunthararajah, Yan Xu

Chemistry Faculty Publications

The DNA hypomethylating agents decitabine and 5-azacytidine are the only two drugs approved for treatment of all subtypes of the myeloid malignancy myelodysplastic syndromes (MDS). The key to drug activity is incorporation into target cell DNA, however, a practical method to measure this incorporation is un-available. Here, we report a sensitive and specific LC-MS/MS method to simultaneously measure decitabine incorporation and DNA hypomethylation. A stable heavy isotope of 2'-deoxycytidine was used as an internal standard and one-step multi-enzyme digestion was used to release the DNA bound drug. Enzyme-released decitabine along with other mononucleosides were separated by a reverse-phase C-18 column …


Inhibiting Translesion Dna Synthesis As An Approach To Combat Drug Resistance To Dna Damaging Agents, Jung-Suk Choi, Seol Kim, Edward Motea, Anthony J. Berdis Jun 2017

Inhibiting Translesion Dna Synthesis As An Approach To Combat Drug Resistance To Dna Damaging Agents, Jung-Suk Choi, Seol Kim, Edward Motea, Anthony J. Berdis

Chemistry Faculty Publications

Anti-cancer agents exert therapeutic effects by damaging DNA. Unfortunately, DNA polymerases can effectively replicate the formed DNA lesions to cause drug resistance and create more aggressive cancers. To understand this process at the cellular level, we developed an artificial nucleoside that visualizes the replication of damaged DNA to identify cells that acquire drug resistance through this mechanism. Visualization is achieved using "click" chemistry to covalently attach azide-containing fluorophores to the ethynyl group present on the nucleoside analog after its incorporation opposite damaged DNA. Flow cytometry and microscopy techniques demonstrate that the extent of nucleotide incorporation into genomic DNA is enhanced …


Copalic Acid Analogs Down-Regulate Androgen Receptor And Inhibit Small Chaperone Protein, Nethrie D. Idippily, Qiaoyun Zheng, Chunfang Gan, Aicha Quamine, Morgan M. Ashcraft, Bo Zhong, Bin Su Ph.D. Jun 2017

Copalic Acid Analogs Down-Regulate Androgen Receptor And Inhibit Small Chaperone Protein, Nethrie D. Idippily, Qiaoyun Zheng, Chunfang Gan, Aicha Quamine, Morgan M. Ashcraft, Bo Zhong, Bin Su Ph.D.

Chemistry Faculty Publications

Copalic acid, one of the diterpenoid acids in copaiba oil, inhibited the chaperone function of α-crystallin and heat shock protein 27 kD (HSP27). It also showed potent activity in decreasing an HSP27 client protein, androgen receptor (AR), which makes it useful in prostate cancer treatment or prevention. To develop potent drug candidates to decrease the AR level in prostate cancer cells, more copalic acid analogs were synthesized. Using the level of AR as the readout, 15 of the copalic acid analogs were screened and two compounds were much more potent than copalic acid. The compounds also dose-dependently inhibited AR positive …


Hmba Is A Putative Hsp70 Activator Stimulating Hexim1 Expression That Is Down-Regulated By Estrogen, Rati Lama, Chunfang Gan, Nethrie Idippily, Viharika Bobba, David Danielpour, Monica Montano, Bin Su Ph.D. Feb 2017

Hmba Is A Putative Hsp70 Activator Stimulating Hexim1 Expression That Is Down-Regulated By Estrogen, Rati Lama, Chunfang Gan, Nethrie Idippily, Viharika Bobba, David Danielpour, Monica Montano, Bin Su Ph.D.

Chemistry Faculty Publications

Hexamethylene bis-acetamide inducible protein 1 (HEXIM1) is identified as a novel inhibitor of estrogen stimulated breast cell growth, and it suppresses estrogen receptor-a transcriptional activity. HEXIM1 protein level has been found to be downregulated by estrogens. Recently, HEXIM1 has been found to inhibit androgen receptor transcriptional activity as well. Researchers have used Hexamethylene bisacetamide (HMBA) for decades to stimulate HEXIM1 expression, which also inhibit estrogen stimulated breast cancer cell gene activation and androgen stimulated prostate cancer gene activation. However, the direct molecular targets of HMBA that modulate the induction of HEXIM1 expression in mammalian cells have not been identified. Based …


A Dilute-And-Shoot Flow-Injection Tandem Mass Spectrometry Method For Quantification Of Phenobarbital In Urine, Ravali Alagandula, Xiang Zhou, Baochuan Guo Jan 2017

A Dilute-And-Shoot Flow-Injection Tandem Mass Spectrometry Method For Quantification Of Phenobarbital In Urine, Ravali Alagandula, Xiang Zhou, Baochuan Guo

Chemistry Faculty Publications

RATIONALE: Liquid chromatography/tandem mass spectrometry (LC/MS/MS) is the gold standard of urine drug testing. However, current LC-based methods are time consuming, limiting the throughput of MS-based testing and increasing the cost. This is particularly problematic for quantification of drugs such as phenobarbital, which is often analyzed in a separate run because they must be negatively ionized.

METHODS: This study examined the feasibility of using a dilute-and-shoot flow-injection method without LC separation to quantify drugs with phenobarbital as a model system. Briefly, a urine sample containing phenobarbital was first diluted by 10 times, followed by flow injection of the diluted sample …


Synthesis Of Vorinostat And Cholesterol Conjugate To Enhance The Cancer Cell Uptake Selectivity, Nethrie D. Idippily, Chunfang Gan, Paul Orefice, Jane Peterson, Bin Su Ph.D. Jan 2017

Synthesis Of Vorinostat And Cholesterol Conjugate To Enhance The Cancer Cell Uptake Selectivity, Nethrie D. Idippily, Chunfang Gan, Paul Orefice, Jane Peterson, Bin Su Ph.D.

Chemistry Faculty Publications

Histone deacetylase (HDAC) inhibitors modulate various cellular functions including proliferation, differentiation, and apoptosis. Vorinostat (SuberAniloHydroxamic Acid, SAHA) is the first HDAC inhibitor approved by FDA for cancer treatment. However, SAHA distributes in cancer tissue and normal tissue in similar levels. It will be ideal to selectively deliver SAHA into cancer cells. Rapidly growing cancer cells have a great need of cholesterol. Low-density lipoprotein (LDL) is the major cholesterol carrier in plasma and its uptake is mediated by LDL-receptor (LDL-R), a glycoprotein overexpressed on the surface of cancer cells. Herein, we designed and synthesized a SAHA cholesterol conjugate, and further formed …


Novel Protein Disulfide Isomerase Inhibitor With Anticancer Activity In Multiple Myeloma, Sergei Vatolin, James G. Phillips, Babal K. Jha, Shravya Govindgari, Jennifer Hu, Dale Grabowski, Yvonne Parker, Daniel J. Lindner, Fei Zhong, Clark W. Distelhorst, Mitchell R. Smith, Claudiu Cotta, Yan Xu, Sujatha Chilakala, Rebecca R. Kuang, Samantha Tall, Frederic J. Reu Jun 2016

Novel Protein Disulfide Isomerase Inhibitor With Anticancer Activity In Multiple Myeloma, Sergei Vatolin, James G. Phillips, Babal K. Jha, Shravya Govindgari, Jennifer Hu, Dale Grabowski, Yvonne Parker, Daniel J. Lindner, Fei Zhong, Clark W. Distelhorst, Mitchell R. Smith, Claudiu Cotta, Yan Xu, Sujatha Chilakala, Rebecca R. Kuang, Samantha Tall, Frederic J. Reu

Chemistry Faculty Publications

Multiple myeloma cells secrete more disulfide bond–rich proteins than any other mammalian cell. Thus, inhibition of protein disulfide isomerases (PDI) required for protein folding in the endoplasmic reticulum (ER) should increase ER stress beyond repair in this incurable cancer. Here, we report the mechanistically unbiased discovery of a novel PDI-inhibiting compound with antimyeloma activity. We screened a 30,355 small-molecule library using a multilayered multiple myeloma cell–based cytotoxicity assay that modeled disease niche, normal liver, kidney, and bone marrow. CCF642, a bone marrow–sparing compound, exhibited a submicromolar IC50 in 10 of 10 multiple myeloma cell lines. An active biotinylated analog …


Targeting Radioresistant Breast Cancer Cells By Single Agent Chk1 Inhibitor Via Enhancing Replication Stress, Yao Zhang, Jinzhi Lai, Zhanwen Du, Jinnan Gao, Shuming Yang, Shashank Gorityala, Xiahui Xiong, Ou Deng, Zhefu Ma, Chunhong Yan, Gonzalo Susana, Yan Xu, Junran Zhang Jan 2016

Targeting Radioresistant Breast Cancer Cells By Single Agent Chk1 Inhibitor Via Enhancing Replication Stress, Yao Zhang, Jinzhi Lai, Zhanwen Du, Jinnan Gao, Shuming Yang, Shashank Gorityala, Xiahui Xiong, Ou Deng, Zhefu Ma, Chunhong Yan, Gonzalo Susana, Yan Xu, Junran Zhang

Chemistry Faculty Publications

Radiotherapy (RT) remains a standard therapeutic modality for breast cancer patients. However, intrinsic or acquired resistance limits the efficacy of RT. Here, we demonstrate that CHK1 inhibitor AZD7762 alone significantly inhibited the growth of radioresistant breast cancer cells (RBCC). Given the critical role of ATR/CHK1 signaling in suppressing oncogene-induced replication stress (RS), we hypothesize that CHK1 inhibition leads to the specific killing for RBCC due to its abrogation in the suppression of RS induced by oncogenes. In agreement, the expression of oncogenes c-Myc/CDC25A/c-Src/H-ras/E2F1 and DNA damage response (DDR) proteins ATR/CHK1/BRCA1/CtIP were elevated in RBCC. AZD7762 exposure led to significantly higher …


Specific N-Glycans Of Hepatocellular Carcinoma Cell Surface And The Abnormal Increase Of Core-Α-1, 6-Fucosylated Triantennary Glycan Via N-Acetylglucosaminyltransferases-Iva Regulation, Huan Nie, Xia Liu, Yubao Zhang, Tingting Li, Chao Zhan, Wenjuan Huo, Anshun He, Yuanfei Yao, Yu Jin, Youpeng Qu, Xue-Long Sun, Yu Li Jan 2015

Specific N-Glycans Of Hepatocellular Carcinoma Cell Surface And The Abnormal Increase Of Core-Α-1, 6-Fucosylated Triantennary Glycan Via N-Acetylglucosaminyltransferases-Iva Regulation, Huan Nie, Xia Liu, Yubao Zhang, Tingting Li, Chao Zhan, Wenjuan Huo, Anshun He, Yuanfei Yao, Yu Jin, Youpeng Qu, Xue-Long Sun, Yu Li

Chemistry Faculty Publications

Glycosylation alterations of cell surface proteins are often observed during the progression of malignancies. The specific cell surface N-glycans were profiled in hepatocellular carcinoma (HCC) with clinical tissues (88 tumor and adjacent normal tissues) and the corresponding serum samples of HCC patients. The level of core-α-1,6-fucosylated triantennary glycan (NA3Fb) increased both on the cell surface and in the serum samples of HCC patients (p < 0.01). Additionally, the change of NA3Fb was not influenced by Hepatitis B virus (HBV)and cirrhosis. Furthermore, the mRNA and protein expression of N-acetylglucosaminyltransferase IVa (GnT-IVa), which was related to the synthesis of the NA3Fb, was substantially increased in HCC tissues. Knockdown of GnT-IVa leads to a decreased level of NA3Fb and decreased ability of invasion and migration in HCC cells. NA3Fb can be regarded as a specific cell surface N-glycan of HCC. The high expression of GnT-IVa is the cause of the abnormal increase of NA3Fb on the HCC cell surface, which regulates cell migration. This study demonstrated the specific N-glycans of the cell surface and the mechanisms of altered glycoform related with HCC. These findings lead to better understanding of the function of glycan and glycosyltransferase in the tumorigenesis, progression and metastasis of HCC.


Lead Optimization Of Dual Tubulin And Hsp27 Inhibitors, Bo Zhong, Rati Lama, Daniel G. Kulman, Bibo Li Ph.D., Bin Su Ph.D. Jun 2014

Lead Optimization Of Dual Tubulin And Hsp27 Inhibitors, Bo Zhong, Rati Lama, Daniel G. Kulman, Bibo Li Ph.D., Bin Su Ph.D.

Chemistry Faculty Publications

Tubulin and heat shock protein 27 (Hsp27) are well-characterized molecular targets for anti-cancer drug development. We previously identified lead compounds that inhibited both Hsp27 and tubulin. These compounds exhibited extensive anti-cancer activities against the proliferation of various human cancer cell lines. In the current study, a systematic ligand based structural optimization led to new analogs that significantly inhibited the growth of a panel of breast cancer cell lines. Furthermore, the most potent compounds were examined with tubulin polymerization assay and Hsp27 chaperone activity assay. The compounds showed potent tubulin polymerization inhibition but no Hsp27 inhibitory effect. The structural optimization dissected …


Glyco-Modification Of Protein With O-Cyanate Chain-End Functionalized Glycopolymer Via Isourea Bond Formation, Valentinas Gruzdys, Hailong Zhang, Xue-Long Sun Jan 2014

Glyco-Modification Of Protein With O-Cyanate Chain-End Functionalized Glycopolymer Via Isourea Bond Formation, Valentinas Gruzdys, Hailong Zhang, Xue-Long Sun

Chemistry Faculty Publications

Glycoengineering aimed at addition of carbohydrates to proteins is an attractive approach to alter pharmacokinetic properties of proteins such as enhancing stability and prolonging the duration of action. We report a novel protein glyco-modification of BSA and recombinant thrombomodulin with O-cyanate chain-end functionalized glycopolymer via isourea bond formation. The protein glycoconjugates were confirmed by SDS-PAGE, western blot, and MALDI-TOF Mass Spectrometry. Protein C activation activity of the glyco-modified recombinant thrombomodulin was confirmed, proving no interference to activity from the glycopolymer modification. The isourea bond formation under mild conditions was demonstrated as an alternative method for protein modification with polymers.


From Cox-2 Inhibitor Nimesulide To Potent Anti-Cancer Agent: Synthesis, In Vitro, In Vivo And Pharmacokinetic Evaluation, Bo Zhong, Xiaohan Cai, Snigdha Chennamaneni, Xin Yi, Lili Liu, John J. Pink, Afshin Dowlati, Yan Xu, Aimin Zhou, Bin Su Jan 2012

From Cox-2 Inhibitor Nimesulide To Potent Anti-Cancer Agent: Synthesis, In Vitro, In Vivo And Pharmacokinetic Evaluation, Bo Zhong, Xiaohan Cai, Snigdha Chennamaneni, Xin Yi, Lili Liu, John J. Pink, Afshin Dowlati, Yan Xu, Aimin Zhou, Bin Su

Chemistry Faculty Publications

Cyclooxygenase-2 (COX-2) inhibitor nimesulide inhibits the proliferation of various types of cancer cells mainly via COX-2 independent mechanisms, which makes it a good lead compound for anti-cancer drug development. In the presented study, a series of new nimesulide analogs were synthesized based on the structure–function analysis generated previously. Some of them displayed very potent anti-cancer activity with IC50s around 100 nM–200 nM to inhibit SKBR-3 breast cancer cell growth. CSUOH0901 (NSC751382) from the compound library also inhibits the growth of the 60 cancer cell lines used at National Cancer Institute Developmental therapeutics Program (NCIDTP) with IC50s around 100 nM–500 nM. …


Targeting Base Excision Repair Suggests A New Therapeutic Strategy Of Fludarabine For The Treatment Of Chronic Lymphocytic Leukemia, A. D. Bulgar, M. Snell, J. R. Donze, E. B. Kirkland, Lan Li, Shuming Yang, Yan Xu, S. L. Gerson, Lili Liu Jan 2010

Targeting Base Excision Repair Suggests A New Therapeutic Strategy Of Fludarabine For The Treatment Of Chronic Lymphocytic Leukemia, A. D. Bulgar, M. Snell, J. R. Donze, E. B. Kirkland, Lan Li, Shuming Yang, Yan Xu, S. L. Gerson, Lili Liu

Chemistry Faculty Publications

No abstract provided.