Open Access. Powered by Scholars. Published by Universities.®

Medicinal-Pharmaceutical Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Chapman University

2021

Discipline
Keyword
Publication
Publication Type
File Type

Articles 1 - 7 of 7

Full-Text Articles in Medicinal-Pharmaceutical Chemistry

Cyclic Peptide-Gadolinium Nanocomplexes As Sirna Delivery Tools, Amir Nasrolahi Shirazi, Muhammad Imran Sajid, Dindyal Mandal, David Stickley, Stephanie Nagasawa, Joshua Long, Sandeep Lohan, Keykavous Parang, Rakesh Kumar Tiwari Oct 2021

Cyclic Peptide-Gadolinium Nanocomplexes As Sirna Delivery Tools, Amir Nasrolahi Shirazi, Muhammad Imran Sajid, Dindyal Mandal, David Stickley, Stephanie Nagasawa, Joshua Long, Sandeep Lohan, Keykavous Parang, Rakesh Kumar Tiwari

Pharmacy Faculty Articles and Research

We have recently reported that a cyclic peptide containing five tryptophan, five arginine, and one cysteine amino acids [(WR)5C], was able to produce peptide-capped gadolinium nanoparticles, [(WR)5C]-GdNPs, in the range of 240 to 260 nm upon mixing with an aqueous solution of GdCl3. Herein, we report [(WR)5C]-GdNPs as an efficient siRNA delivery system. The peptide-based gadolinium nanoparticles (50 µM) did not exhibit significant cytotoxicity (~93% cell viability at 50 µM) in human leukemia T lymphoblast cells (CCRF-CEM) and triple-negative breast cancer cells (MDA-MB-231) after 48 h. Fluorescence-activated cell sorting (FACS) analysis indicated …


Atomistic Simulations And In Silico Mutational Profiling Of Protein Stability And Binding In The Sars-Cov-2 Spike Protein Complexes With Nanobodies: Molecular Determinants Of Mutational Escape Mechanisms, Gennady M. Verkhivker, Steve Agajanian, Deniz Yasar Oztas, Grace Gupta Sep 2021

Atomistic Simulations And In Silico Mutational Profiling Of Protein Stability And Binding In The Sars-Cov-2 Spike Protein Complexes With Nanobodies: Molecular Determinants Of Mutational Escape Mechanisms, Gennady M. Verkhivker, Steve Agajanian, Deniz Yasar Oztas, Grace Gupta

Mathematics, Physics, and Computer Science Faculty Articles and Research

Structure-functional studies have recently revealed a spectrum of diverse high-affinity nanobodies with efficient neutralizing capacity against SARS-CoV-2 virus and resilience against mutational escape. In this study, we combine atomistic simulations with the ensemble-based mutational profiling of binding for the SARS-CoV-2 S-RBD complexes with a wide range of nanobodies to identify dynamic and binding affinity fingerprints and characterize the energetic determinants of nanobody-escaping mutations. Using an in silico mutational profiling approach for probing the protein stability and binding, we examine dynamics and energetics of the SARS-CoV-2 complexes with single nanobodies Nb6 and Nb20, VHH E, a pair combination VHH E + …


Ganglioside Alters Phospholipase Trafficking, Inhibits Nf-Κb Assembly, And Protects Tight Junction Integrity, John J. Miklavcic, Qun Li, Jordan Skolnick, Alan B. R. Thomson, Vera C. Mazurak, Michael Tom Clandinin Jul 2021

Ganglioside Alters Phospholipase Trafficking, Inhibits Nf-Κb Assembly, And Protects Tight Junction Integrity, John J. Miklavcic, Qun Li, Jordan Skolnick, Alan B. R. Thomson, Vera C. Mazurak, Michael Tom Clandinin

Food Science Faculty Articles and Research

Background and Aims: Dietary gangliosides are present in human milk and consumed in low amounts from organ meats. Clinical and animal studies indicate that dietary gangliosides attenuate signaling processes that are a hallmark of inflammatory bowel disease (IBD). Gangliosides decrease pro-inflammatory markers, improve intestinal permeability, and reduce symptoms characteristic in patients with IBD. The objective of this study was to examine mechanisms by which dietary gangliosides exert beneficial effects on intestinal health.

Methods: Studies were conducted in vitro using CaCo-2 intestinal epithelial cells. Gangliosides were extracted from milk powder and incubated with differentiated CaCo-2 cells after exposure to pro-inflammatory stimuli. …


Data For "Subtype-Selective Positive Modulation Of Sk Channels Depends On The Ha/Hb Helices", Miao Zhang, Meng Cui Mar 2021

Data For "Subtype-Selective Positive Modulation Of Sk Channels Depends On The Ha/Hb Helices", Miao Zhang, Meng Cui

Pharmacy Faculty Data Sets

In the activated state of small-conductance Ca2+-activated potassium (SK) channels, calmodulin interacts with the HA/HB helices and the S4-S5 linker. CyPPA potentiates SK2a and SK3 channel activity but not the SK1 and IK subtypes. Here, we report that the subtype-selectivity of CyPPA relies on the HA/HB helices. Mutating residues in the HA (V420) and HB (K467) helices of SK2a channels to their equivalent residues in IK channels diminished the potency of CyPPA. CyPPA elicited prominent responses on mutant IK channels with an arginine residue in the HB helix substituted for its equivalent lysine residue in the SK2a channels …


Label‑Free Spectral Imaging To Study Drug Distribution And Metabolism In Single Living Cells, Qamar Alshammari, Rajasekharreddy Pala, Nir Katzir, Surya M. Nauli Feb 2021

Label‑Free Spectral Imaging To Study Drug Distribution And Metabolism In Single Living Cells, Qamar Alshammari, Rajasekharreddy Pala, Nir Katzir, Surya M. Nauli

Pharmacy Faculty Articles and Research

During drug development, evaluation of drug and its metabolite is an essential process to understand drug activity, stability, toxicity and distribution. Liquid chromatography (LC) coupled with mass spectrometry (MS) has become the standard analytical tool for screening and identifying drug metabolites. Unlike LC/MS approach requiring liquifying the biological samples, we showed that spectral imaging (or spectral microscopy) could provide high-resolution images of doxorubicin (dox) and its metabolite doxorubicinol (dox’ol) in single living cells. Using this new method, we performed measurements without destroying the biological samples. We calculated the rate constant of dox translocating from extracellular moiety into the cell and …


The Mechanism Of Β-N-Methylamino-L-Alanine Inhibition Of Trna Aminoacylation And Its Impact On Misincorporation, Nien-Ching Han, Tammy J. Bullwinkle, Kaeli F. Loeb, Kym F. Faull, Kyle Mohler, Jesse Rinehart, Michael Ibba Jan 2021

The Mechanism Of Β-N-Methylamino-L-Alanine Inhibition Of Trna Aminoacylation And Its Impact On Misincorporation, Nien-Ching Han, Tammy J. Bullwinkle, Kaeli F. Loeb, Kym F. Faull, Kyle Mohler, Jesse Rinehart, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

β-N-methylamino-l-alanine (BMAA) is a nonproteinogenic amino acid that has been associated with neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and Alzheimer's disease (AD). BMAA has been found in human protein extracts; however, the mechanism by which it enters the proteome is still unclear. It has been suggested that BMAA is misincorporated at serine codons during protein synthesis, but direct evidence of its cotranslational incorporation is currently lacking. Here, using LC-MS–purified BMAA and several biochemical assays, we sought to determine whether any aminoacyl-tRNA synthetase (aaRS) utilizes BMAA as a substrate for aminoacylation. Despite BMAA's previously predicted misincorporation at serine …


Differential Modulation Of Sk Channel Subtypes By Phosphorylation, Young-Woo Nam, Dezhi Kong, Dong Wang, Razan Orfali, Rinzhin T. Sherpa, Jennifer Totonchy, Surya M. Nauli, Miao Zhang Jan 2021

Differential Modulation Of Sk Channel Subtypes By Phosphorylation, Young-Woo Nam, Dezhi Kong, Dong Wang, Razan Orfali, Rinzhin T. Sherpa, Jennifer Totonchy, Surya M. Nauli, Miao Zhang

Pharmacy Faculty Articles and Research

Small-conductance Ca2+-activated K+ (SK) channels are voltage-independent and are activated by Ca2+ binding to the calmodulin constitutively associated with the channels. Both the pore-forming subunits and the associated calmodulin are subject to phosphorylation. Here, we investigated the modulation of different SK channel subtypes by phosphorylation, using the cultured endothelial cells as a tool. We report that casein kinase 2 (CK2) negatively modulates the apparent Ca2+ sensitivity of SK1 and IK channel subtypes by more than 5-fold, whereas the apparent Ca2+ sensitivity of the SK3 and SK2 subtypes is only reduced by ∼2-fold, when heterologously …