Open Access. Powered by Scholars. Published by Universities.®

Medicinal-Pharmaceutical Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Medicinal-Pharmaceutical Chemistry

Enhanced Platinum (Ii) Drug Delivery For Anti-Cancer Therapy, Marek T. Wlodarczyk Sep 2021

Enhanced Platinum (Ii) Drug Delivery For Anti-Cancer Therapy, Marek T. Wlodarczyk

Dissertations, Theses, and Capstone Projects

Over the years, anti-cancer therapies have improved the overall survival rate of patients. Nevertheless, the traditional free drug therapies still suffer from side effects and systemic toxicity, resulting in low drug dosages in the clinic. This often leads to suboptimal drug concentrations reaching cancer cells, contributing to treatment failure and drug resistance. Among available anti-cancer therapies, metallodrugs are of great interest. Platinum (II)-based agents are highly potent and are used to treat many cancers, including ovarian cancer (OC). Cisplatin (cis-diaminedichloroplatinum (II)) is the first Food and Drug Administration (FDA)-approved metallodrug for treatment of solid tumors, and its mechanism …


Nanomaterials As Stationary Phases And Supports In Liquid Chromatography: A Review, Sandya Beeram, Elliott Rodriguez, Suresh Doddavenkatanna, Zhao Li, Allegra Pekarek, Darin Peev, Kathryn Goerl, Gianfranco Trovato, Tino Hofmann, David S. Hage Jan 2017

Nanomaterials As Stationary Phases And Supports In Liquid Chromatography: A Review, Sandya Beeram, Elliott Rodriguez, Suresh Doddavenkatanna, Zhao Li, Allegra Pekarek, Darin Peev, Kathryn Goerl, Gianfranco Trovato, Tino Hofmann, David S. Hage

Chemistry Department: Faculty Publications

The development of various nanomaterials over the last few decades has led to many applications for these materials in liquid chromatography (LC). This review will look at the types of nanomaterials that have been incorporated into LC systems and the applications that have been explored for such systems. A number of carbon-based nanomaterials and inorganic nanomaterials have been considered for use in LC, ranging from carbon nanotubes, fullerenes and nanodiamonds to metal nanoparticles and nanostructures based on silica, alumina, zirconia and titanium dioxide. Many ways have been described for incorporating these nanomaterials into LC systems. These methods have included covalent …