Open Access. Powered by Scholars. Published by Universities.®

Medicinal-Pharmaceutical Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Biochemistry

Theses/Dissertations

Institution
Keyword
Publication Year
Publication

Articles 1 - 30 of 39

Full-Text Articles in Medicinal-Pharmaceutical Chemistry

Investigating The Activity Of Alternative Warheads For Targeted Covalent Inhibition Of The Inhibitor Vertebrate Lysozyme Protein From Pseudomonas Aeruginosa, Katie Hambrick Jun 2023

Investigating The Activity Of Alternative Warheads For Targeted Covalent Inhibition Of The Inhibitor Vertebrate Lysozyme Protein From Pseudomonas Aeruginosa, Katie Hambrick

Master of Science in Chemical Sciences Theses

Pseudomonas aeruginosa (P. aeruginosa) is a Gram-negative bacterium that causes blood and lung infections in hospital environments due to its ability to survive on improperly sterilized medical equipment. P. aeruginosa has developed several multi-drug resistance mechanisms that make it very difficult to treat with current antibiotics.1 This presents the need for a new class of antibiotics that cannot be overcome by P. aeruginosa’s mechanisms of resistance.

The primary goal of this project was to develop a small library of inhibitors that could later be incorporated into lead compounds for novel antibiotic drug discovery. One of P. …


The Development Of Novel Radioimmunoconjugates For The Pet Imaging And Radioimmunotherapy Of Cancer, Samantha M. Sarrett Jun 2023

The Development Of Novel Radioimmunoconjugates For The Pet Imaging And Radioimmunotherapy Of Cancer, Samantha M. Sarrett

Dissertations, Theses, and Capstone Projects

Antibodies have long played a vital role in nuclear medicine for both the diagnosis and therapy of various malignancies. The role and development of antibodies in nuclear medicine can be broadly separated into three different categories: 1) bioconjugation strategies, 2) immunoPET imaging, and 3) radioimmunotherapy. This dissertation will attempt to comprehensively cover each of these categories through a series of studies, protocols, and reviews. For the bioconjugation strategies, we will describe the development of a novel site-selective bioconjugation strategy using an innovative lysine-targeting reagent, PFP-bisN3, to prepare [89Zr]Zr-SSKDFO-pertuzumab for visualizing HER2+ breast cancer. Further, …


Development And Biological Evaluation Of Selective Small-Molecule Inhibitors Of The Human Cytochrome P450 1b1, Austin Hachey Jan 2023

Development And Biological Evaluation Of Selective Small-Molecule Inhibitors Of The Human Cytochrome P450 1b1, Austin Hachey

Theses and Dissertations--Chemistry

The human cytochrome P450 1B1 (CYP1B1) is an emerging target for small- molecule therapeutics. Several solid tumors overexpress CYP1B1 to the degree that it has been referred to as a universal tumor antigen. Conversely, its expression is low in healthy tissues. CYP1B1 may drive tumorigenesis through promoting the formation of reactive toxins from environmental pollutants or from endogenous hormone substrates. Additionally, the expression of CYP1B1 in tumors is associated with resistance to several common chemotherapies and with poor prognoses in cancer patients. However, inhibiting CYP1B1 with small molecules has been demonstrated in cellular and murine model systems to reverse this …


Synthesis Of 6,6- And 7,7-Difluoro-1-Acetamidopyrrolizidines And Their Oxidation Catalyzed By The Nonheme Fe Oxygenase Lolo, Nabin Panth Jan 2022

Synthesis Of 6,6- And 7,7-Difluoro-1-Acetamidopyrrolizidines And Their Oxidation Catalyzed By The Nonheme Fe Oxygenase Lolo, Nabin Panth

Theses and Dissertations--Chemistry

One of the remarkable steps in loline alkaloid biosynthesis is the installation of an ether bridge between two unactivated C atoms in 1-exo-acetamidopyrrolizidine (AcAP). LolO, a 2-oxoglutarate-dependent nonheme Fe oxygenase, catalyzes both the hydroxylation of AcAP and the resulting alcohol's cycloetherification to give N-acetylnornoline (NANL). The mechanism of hydroxylation is well understood, but the mechanism of the oxacyclization is not. I synthesized difluorinated analogs of AcAP in an attempt to further understand the mechanism of the unusual cycloetherification step.

I prepared 6,6-F2-AcAP in eight steps from N,O-protected 4-oxoproline. The key step was a Dieckmann …


Analysis Of Botulinum Toxin A And Interacting Proteins In Skeletal Muscle Cells: An Investigation Into The Mechanisms Of Botulinum Toxin A As A Treatment For Chronic Exertional Compartment Syndrome, Lauren Kee Jul 2021

Analysis Of Botulinum Toxin A And Interacting Proteins In Skeletal Muscle Cells: An Investigation Into The Mechanisms Of Botulinum Toxin A As A Treatment For Chronic Exertional Compartment Syndrome, Lauren Kee

Pence-Boyce STEM Student Scholarship

Background: Chronic exertional compartment syndrome (CECS) is a condition in which muscle tissue expands against the surrounding fascia during activity and is compressed along with the nerves and blood vessels within the muscle compartment, leading to abnormally high intracompartmental pressure (ICP) and debilitating pain. Treatment typically includes fasciotomy, which results in significant levels of CECS recurrence; however, botulinum toxin A (BoNT-A) injection has recently been seen to decrease both ICP and pain through an unknown mechanism with little to no recurrence.

Methods: In this study, cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2), prostaglandin E2 receptor 4 (EP4), endothelial nitric oxide synthase (eNOS), …


Design, Synthesis And Evaluation Of Molecules With Selective And Poly-Pharmacological Actions At D1r, D3r And Sigma Receptors, Pierpaolo Cordone Jun 2021

Design, Synthesis And Evaluation Of Molecules With Selective And Poly-Pharmacological Actions At D1r, D3r And Sigma Receptors, Pierpaolo Cordone

Dissertations, Theses, and Capstone Projects

The dopamine D3 receptor (D3R) is one of the most studied receptors involved in drug addiction. One of the most common strategies to treat substance use disorders is via D3R antagonism. The majority of the D3R antagonists synthesized so far have poor pharmacokinetic properties and/or lack selectivity toward D3R. In this thesis, the design, synthesis and biological evaluation of novel molecules that target the dopamine D1 receptor (D1R), D3R and the serendipitous discovery of molecules that target s receptors will be described.

Chapter 1 presents a survey of the fundamental pharmacology of D1R, D3R and s receptors and the therapeutic …


Biochemical Characterization Of Small Molecule Inhibitor Binding On A Ras Related Gtpase And Its Effector Interactions, Djamali Muhoza May 2021

Biochemical Characterization Of Small Molecule Inhibitor Binding On A Ras Related Gtpase And Its Effector Interactions, Djamali Muhoza

Graduate Theses and Dissertations

The Ras superfamily of GTPases has 167 proteins that are involved in various cellular processes such as proliferation, transformation, migration, and inhibition of cell death. Mutations, abnormal expression, and function of these proteins are observed in many diseases, including several forms of cancer. Even though these GTPases were among the first discovered oncogenes, no successful Ras drug candidate has successfully passed clinical trials. Drugs targeting these proteins have failed mainly because of the complexity of their regulation, their high affinity to GTP, and their structure’s dynamic nature. Recently, novel promising targeting approaches have renewed interest in the Ras drug discovery …


Using Nmr Spectroscopy And Computational Chemistry To Confirm The Structure Of Novel Antibiotic Nocamycin O, Stephanie Lewis Jan 2021

Using Nmr Spectroscopy And Computational Chemistry To Confirm The Structure Of Novel Antibiotic Nocamycin O, Stephanie Lewis

CMC Senior Theses

In recent years, many medically promising antibiotics have been discovered in nature, especially in insect-microbe symbioses. One of the better-studied examples of this kind of defensive relationship is that of fungus-growing ants and the antibiotic-producing Actinobacteria. These bacteria produce several defensive chemicals with myriad uses, including one antibiotic that inhibits the growth of several bacterial strains, including other Actinobacteria. This antibiotic (known as nocamycin O) is a promising candidate for medicinal use due to its similarities to bacterial RNA polymerase inhibitors tirandamycin and streptolydigin, which inhibit several human pathogens. The determination of the structure of nocamycin O will be an …


Biocompatible And Multifunctional Trityl Spin Probes For Electron Paramagnetic Resonance Spectroscopy, Teresa D. Gluth Jan 2021

Biocompatible And Multifunctional Trityl Spin Probes For Electron Paramagnetic Resonance Spectroscopy, Teresa D. Gluth

Graduate Theses, Dissertations, and Problem Reports

The primary objective of my thesis was to develop and utilize a biocompatible multifunctional trityl spin probe for concurrent measurement of pO2, pHe, and [Pi] in vivo by electron paramagnetic resonance (EPR) spectroscopy (Chapter 2). My first goal was to synthesize the proposed probe we are terming HOPE71. Secondly, HOPE71 was characterized by X-band and L-band EPR spectroscopy. Next, the biocompatibility of HOPE71 was assessed through an albumin binding test, cytotoxicity assays, and in vivo intravenous tolerance. Then, the use of HOPE71 to measure the target parameters was demonstrated in a breast cancer …


Applied Molecular Dynamics: From Targeting Viral Helicases, To Understanding The Interactions Of Cucurbituril Complexes In Ionic Solutions, Bryan Raubenolt Dec 2020

Applied Molecular Dynamics: From Targeting Viral Helicases, To Understanding The Interactions Of Cucurbituril Complexes In Ionic Solutions, Bryan Raubenolt

University of New Orleans Theses and Dissertations

Molecular Dynamics simulations are a highly useful tool in helping understand the fundamental interactions present in a variety of chemical systems. The work discussed here illustrates it’s use in determining the conformational dynamics of the Zika and SARS-Cov-2 helicase in a physiological environment, largely in an effort to discover inhibitors capable of rendering the protein inert. Additionally, we show how it can be used to understand paradoxical trends in the anion-induced precipitation of Cucurbituril cavitands.

Viral helicases are motor proteins tasked with unwinding the viral dsRNA, a crucial step in preparing the strand to be translatable by host cells. By …


Investigating Chitosan Modified With Triethylammonium Butanamide And Triethylphosphonium Butanamide As Non-Viral Gene Delivery Vectors By Examining Cytotoxicity And Transfection Efficiency, Deborah C. Ehie Aug 2020

Investigating Chitosan Modified With Triethylammonium Butanamide And Triethylphosphonium Butanamide As Non-Viral Gene Delivery Vectors By Examining Cytotoxicity And Transfection Efficiency, Deborah C. Ehie

MSU Graduate Theses

Gene therapy is a very challenging field, especially with new emerging genetic disorders. Chitosan (CS), due to chitosan’s flexibility, biocompatibility, and biodegradability, has been of interest in the world of gene therapy especially as researchers are gravitating towards non-viral vectors due to the problems caused by viral vectors. Nevertheless, there are still issues regarding solubility, cellular uptake of cargos being transported in vitro or in vivo, increased cytotoxicity levels, as well as many other things that prevent chitosan from being an efficient gene delivery agent. Here I present five derivatives of chitosan, which were all modified with either triethylphosphonium …


Synthesized Tripodal Amine As Potential Anti-Cancer Therapeutic, Abigail G. Mcnamee Apr 2020

Synthesized Tripodal Amine As Potential Anti-Cancer Therapeutic, Abigail G. Mcnamee

Honors College Theses

Cancer remains a prevalent disease today. This disease may manifest itself in many different ways and affect a variety of tissues with everything from the brain to the blood. With this wide diversity of cancer types, treatment can be complicated since there is not a “one size fits all” treatment for the disease. Surgery, radiation, and chemotherapy are all options that must be weighed with their benefits and side effects. Ultimately though, there are not enough effective treatment options available for every type of cancer. This leaves many with the grim prognosis of never being cured. With this clear need …


Investigations Of The Mechanism Of Action For Lung Cancer Cell Death By A 4-Trifluoromethoxy Substituted Chalcone, Trevor M. Stantliff May 2019

Investigations Of The Mechanism Of Action For Lung Cancer Cell Death By A 4-Trifluoromethoxy Substituted Chalcone, Trevor M. Stantliff

Undergraduate Theses

Chalcones are a diphenyl compound that serves as a natural precursor to flavonoids in plants. Chalcones have been shown to have anticancer and antimicrobial activities. Chemoprevention activity of chalcones are of high interest in medicinal chemistry because of the simple laboratory synthesis and modification via Claisen-Schmidt condensation. Previously this lab created and screened a library of synthetic chalcones against A549 lung adenocarcinoma cell line for antiproliferation properties. We identified a strong drug candidate (4-trifluoromethoxy substituted chalcone) for A549 growth inhibition. However, the cause of inhibition by the substituted chalcone remains to be identified We began to explore the mechanism of …


Bisthioether Stapled Peptides Targeting Polycomb Repressive Complex 2 Gene Repression, Gan Zhang Feb 2019

Bisthioether Stapled Peptides Targeting Polycomb Repressive Complex 2 Gene Repression, Gan Zhang

Dissertations, Theses, and Capstone Projects

Interactions between proteins play a key role in nearly all cellular process, and therefore, disruption of such interactions may lead to many different types of cellular dysfunctions. Hence, pathologic protein-protein interactions (PPIs) constitute highly attractive drug targets and hold great potential for developing novel therapeutic agents for the treatment of incurable human diseases. Unfortunately, the identification of PPI inhibitors is an extremely challenging task, since traditionally used small molecule ligands are mostly unable to cover and anchor on the extensive flat surfaces that define those binary protein complexes. In contrast, large biomolecules such as proteins or peptides are ideal fits …


Isolation And Identification Of Hsc70 Conjugates In Raw264.7 Murine Macrophage-Like Cells, Michael Arland Parsons Jan 2019

Isolation And Identification Of Hsc70 Conjugates In Raw264.7 Murine Macrophage-Like Cells, Michael Arland Parsons

Theses, Dissertations and Capstones

IL12R- β2 is a Type I cytokine receptor and contains the WXXW (WSNWS) sequence that often predicates the post-translational addition of mannose to a tryptophan residue via a carbon-carbon bond. This study will stimulate expression of IL12R- β2 in RAW 264.7 Macrophage-Like Cells by shutting down the extracellular signal kinase (ERK) pathway and introducing inflammatory agents lipopolysaccharide and CpG DNA in order to collect a concentrated sample of IL12R- β2. These samples will be analyzed for the presence of C-mannosyltryptophan residue


Toward An Enzyme-Coupled, Bioorthogonal Platform For Methyltransferases: Probing The Specificity Of Methionine Adenosyltransferases, Tyler D. Huber Jan 2019

Toward An Enzyme-Coupled, Bioorthogonal Platform For Methyltransferases: Probing The Specificity Of Methionine Adenosyltransferases, Tyler D. Huber

Theses and Dissertations--Pharmacy

Methyl group transfer from S-adenosyl-l-methionine (AdoMet) to various substrates including DNA, proteins, and natural products (NPs), is accomplished by methyltransferases (MTs). Analogs of AdoMet, bearing an alternative S-alkyl group can be exploited, in the context of an array of wild-type MT-catalyzed reactions, to differentially alkylate DNA, proteins, and NPs. This technology provides a means to elucidate MT targets by the MT-mediated installation of chemoselective handles from AdoMet analogs to biologically relevant molecules and affords researchers a fresh route to diversify NP scaffolds by permitting the differential alkylation of chemical sites vulnerable to NP MTs that are unreactive to …


Avoiding Adverse Effects: New Ideas In Drug Discovery For Targeting Pparγ, Trey M. Patton Jan 2019

Avoiding Adverse Effects: New Ideas In Drug Discovery For Targeting Pparγ, Trey M. Patton

Graduate Student Theses, Dissertations, & Professional Papers

Peroxisome proliferator-activated receptor gamma (PPARγ) has been a drug target to treat type 2 diabetes for the last 20 years when rosiglitazone and pioglitazone were approved by the FDA in 1999. While effective at increasing insulin sensitivity, these drugs cause serious adverse effects due to their full agonist characteristics. For that reason, drug discovery efforts have attempted to reduce or prevent the amount of agonist character of new PPARγ targeting ligands. Unfortunately, there have been no new FDA approved drugs for the receptor. There is a need for new ideas to produce better quality pharmaceuticals that lessen the impact of …


Design And Synthesis Of Analogs Of Myo-Inositol, Serine, And Cysteine To Enable Chemical Biology Studies, Tanei J. Ricks Dec 2017

Design And Synthesis Of Analogs Of Myo-Inositol, Serine, And Cysteine To Enable Chemical Biology Studies, Tanei J. Ricks

Doctoral Dissertations

Phosphorylated myo-inositol compounds including inositol phosphates (InsPs) as well as the phosphatidylinositol polyphosphate lipids (PIPns) are critical biomolecules that regulate many of the most important biological processes and pathways. They are aberrant in many disease states due to their regulatory function. The same is true of the phospholipid phosphatidylserine (PS) which can serve as a marker to begin apoptosis. However, the full scope of activities of these structures is not clear, particularly since techniques that enable global detection and analysis of the production of these compounds spatially and temporally are lacking. With all of these obstacles in …


A Novel Method For Synthesis Of Hydroxytyrosol, Emmanuel Onobun Aug 2017

A Novel Method For Synthesis Of Hydroxytyrosol, Emmanuel Onobun

Electronic Theses and Dissertations

Hydroxytyrosol, 3,4-dihydroxyphenolethanol, a naturally occurring polyphenol most common in olive tree (Olea europaea), is one of the most effective member of the polyphenols family, because of its remarkable antioxidant activity, its ability to inhibit oxidation of low density lipids (LDL), and its protection against DNA oxidative damage. Hydroxytyrosol, which is widely used in cosmetics and food supplements industries, can be purchased as an olive oil extract that contains low concentration of hydroxytyrosol besides other polyphenols. The price and low natural abundance of hydroxytyrosol make alternative synthetic sources very attractive. In this research, a novel method for the synthesis of pure …


Rational Drug Design Directed At Blocking The Initial Signaling Events In Lipopolysaccharide-Induced Sepsis., Christopher A. Tipton Jul 2017

Rational Drug Design Directed At Blocking The Initial Signaling Events In Lipopolysaccharide-Induced Sepsis., Christopher A. Tipton

Theses

Systemic Inflammatory Response Syndrome (SIRS) is classified as an immune system response to an infectious state. If left untreated, SIRS leads to sepsis, septic shock, end-organ dysfunction, and death. As a patient progresses through these stages, associations of acute respiratory distress, disseminated intravascular coagulation, and acute renal failure persist, resulting in millions of deaths annually. Lipopolysaccharide (LPS), a bacterial endotoxin, is released into the blood stream, triggering SIRS. LPS is found in the outer cell-wall of Gram-negative bacteria and is responsible for initiation of a devastating cytokine storm. One of the regions of LPS, lipid A, is a polyacylated glucosamine …


Cytotoxic And Antimicrobial Effects Of Silver-Containing Surfaces, Sarah Goderecci Mar 2017

Cytotoxic And Antimicrobial Effects Of Silver-Containing Surfaces, Sarah Goderecci

Theses and Dissertations

This study examines applications of sputtered silver coatings as alternatives to traditional antibiotic treatments. Given the increase in reports of antibiotic-resistant bacteria, new treatments and coatings for in-dwelling medical devices such as catheters and orthopedic implants are necessary. Silver oxide films were deposited onto Ti surfaces to examine the efficacy of such coatings against a variety of bacterial species both in vitro and in vivo. Bacterial growth studies showed that coatings exhibited antimicrobial activity against a range of bacterial species acting either in a bacteriostatic or bactericidal mechanism, depending on the target. Limited toxicity to in vitro mammalian cells was …


Phage Display To Identify Functional Resistance Mutations To Rigosertib, Nedim Filipovic Jan 2017

Phage Display To Identify Functional Resistance Mutations To Rigosertib, Nedim Filipovic

CMC Senior Theses

In vitro protein selection has had major impacts in the field of protein engineering. Traditional screens assay individual proteins for specific function. Selection, however, analyzes a pool of mutants and yields the best variants. Phage display, a successful selection technique, also provides a reliable link between variant phenotype and genotype. It can also be coupled with high throughput sequencing to map protein mutations; potentially highlighting vital mutations in variants. We propose to apply this technique to cancer therapy. RAF, a serine/threonine kinase, is critical for cell regulation in mammals. RAF can be activated by oncogenic RAS, found in over 30% …


Analysis Of The Intricacies Of Substrate Recognition Of High Mobility Group Proteins And Aminoacyl-Trna Synthetases Using Non-Cognate Substrates, Douglas Van Iverson Ii Aug 2016

Analysis Of The Intricacies Of Substrate Recognition Of High Mobility Group Proteins And Aminoacyl-Trna Synthetases Using Non-Cognate Substrates, Douglas Van Iverson Ii

Dissertations

The studies presented in section 1 (Chapters I-IV) focus on the design and development of nucleic acid four-way junctions (4WJs) to target a member of the high mobility group (HMG) proteins, the proinflammatory cytokine high mobility group box 1 protein (HMGB1). In the present study, hybrid PNA-DNA 4WJs based on a model DNA 4WJ were constructed to improve the thermal stability of 4WJs while maintaining strong binding affinity toward HMGB1. An electrophoretic mobility shift assay (EMSA) was used to examine the binding affinity of an isolated DNA binding domain of HMGB1, the HMGB1 b-box (HMGB1b), toward a set of PNA-DNA …


Zn(Ii), Cu(Ii), Sn(Ii), And Ni(Ii) And Other Metal Cations Do Not Prevent The Aggregation Of Hiapp, Charles Hoying May 2016

Zn(Ii), Cu(Ii), Sn(Ii), And Ni(Ii) And Other Metal Cations Do Not Prevent The Aggregation Of Hiapp, Charles Hoying

Honors Thesis

The Zn(II) metal ion has been shown to interact with Islet Amyloid Polypeptide (IAPP), a protein implicated in the progression of Type II Diabetes Mellitus, in such a way as to prevent the protein from aggregating into toxic fibers. We set out to find whether other metal ions might similarly prevent IAPP aggregation. Using Thioflavin T (ThT) spectroscopic assays, which measure fluorescence of ThT upon binding to aggregated IAPP, we observed a decrease in aggregation when incubated with Zn(II), Cu(II), Ni(II), and Sn(II). Atomic Force Microscopy (AFM), which can visualize fibril formation, revealed that the metals were not inhibiting IAPP …


Probing Allosteric, Partial Inhibition Of Thrombin Using Novel Anticoagulants, Stephen S. Verespy Iii Jan 2016

Probing Allosteric, Partial Inhibition Of Thrombin Using Novel Anticoagulants, Stephen S. Verespy Iii

Theses and Dissertations

Thrombin is the key protease that regulates hemostasis; the delicate balance between procoagulation and anticoagulation of blood. In clotting disorders, like deep vein thrombosis or pulmonary embolism, procoagulation is up-regulated, but propagation of clotting can be inhibited with drugs targeting the proteases involved, like thrombin. Such drugs however, have serious side effects (e.g., excessive bleeding) and some require monitoring during the course of treatment. The reason for these side effects is the mechanism by which the drugs’ act. The two major mechanisms are direct orthosteric and indirect allosteric inhibition, which will completely abolish the protease’s activity. Herein we sought an …


Responsive Supramolecular Assemblies Based On Amphiphilic Polymers And Hybrid Materials, Longyu Li Nov 2015

Responsive Supramolecular Assemblies Based On Amphiphilic Polymers And Hybrid Materials, Longyu Li

Doctoral Dissertations

The design and synthesis of responsive supramolecular assemblies are of great interest due to their applications in a variety of areas such as drug delivery and sensing. We have developed a facile method to prepare self-crosslinking disulfide-based nanogels derived from an amphiphilic random copolymer containing a hydrophilic oligo-(ethylene glycol)-based side-chain functionality and a hydrophobic pyridyl disulfide functional group. This thesis first provides a concept of studying the influence of Hofmeister ions on the size and guest encapsulation stability of a polymeric nanogel. The size and core density of nanogel can be fine-tuned through the addition of both chaotropes and kosmotropes …


The Use Of Shape Memory Polymers As A Tool To Study Human Fibrosarcoma And Murine Mesenchymal Stem Cell Migration, Justin N. Elkhechen May 2015

The Use Of Shape Memory Polymers As A Tool To Study Human Fibrosarcoma And Murine Mesenchymal Stem Cell Migration, Justin N. Elkhechen

Honors Capstone Projects - All

Shape memory polymers (SMPs) are a class of “smart” materials that can transform between two distinct conformations through external stimuli, such as heat or electricity. Their usage in bioengineering has led to a promising field of research that lies at the interface of cell and mechanobiology, potentially providing insight into cancer therapies and tissue development—two processes that exist in dynamic environments in vivo. The present work involves creating new, shape changing, scaffolds for studies to analyze cell migration upon changes to the environmental topography. Specifically, this Capstone has been primarily focused on the development of a “half and half” fibrous …


Ultrafast Interfacial Electron Transfer Across Molecule-Tio2 Nanocomposites: Towards Solar Cells And Two Photon Absorption, Edwin Mghanga Dec 2014

Ultrafast Interfacial Electron Transfer Across Molecule-Tio2 Nanocomposites: Towards Solar Cells And Two Photon Absorption, Edwin Mghanga

Dissertations

Interfacial charge transfer (ICT) across the molecule-TiO2 nanoparticle interface has gained enormous research attention for applications in dye sensitized solar cells (DSSC), photo-catalysis, water splitting and nonlinear optics. DSSCs are promising clean alternative energy sources. However, current DSSCs suffer from lower efficiencies and higher cost. Better understanding of the ICT processes in DSSCs can help solve these problems. We have used two strategies to understand ICT in the context of DSSCs. Firstly, we used a computationally validated anchor group, acetylacetonate (acac) to bind molecules to the semiconductor surface and facilitate charge separation. Secondly, we used natural dye sensitizers, …


Ligand-Receptor Interactions For Supramolecular Disassembly With Applications In Screening And Drug Delivery, Diego Amado Torres Aug 2014

Ligand-Receptor Interactions For Supramolecular Disassembly With Applications In Screening And Drug Delivery, Diego Amado Torres

Doctoral Dissertations

Proteins have the capacity to bind specific sets of compounds known as ligands, these are small molecules with a recurrent theme in their molecular design that is a characteristic exploited here to (i) identify particular affinities of small molecules for proteins with the aim of using them as ligands, inhibitors, or targeting moieties in more complex systems by means of a methodology that screens small molecules based on protein affinity; (ii) decorate a self-assembling supramolecular system at different positions, making it responsive to a complementary protein with the aim of exploring differences in disassembly and sensitivity of the release of …


Branching Into Rnai: Synthesis, Characterization And Biology Of Branch And Hyperbranch Sirnas, Anthony Muriithi Maina May 2014

Branching Into Rnai: Synthesis, Characterization And Biology Of Branch And Hyperbranch Sirnas, Anthony Muriithi Maina

Seton Hall University Dissertations and Theses (ETDs)

The cancer epidemic continues to afflict millions of humans world-wide each year and despite a renewed hope with the development of new and improved forms of therapy, a cure for cancer remains an elusive goal. This is partly related to the rise of resilient forms of tumors that have evolved with resistance towards conventional chemotherapy and radiation treatments. Moreover, these non-specific therapeutic regimens are highly toxic, leading to severe immunosuppressive effects which poisons the body and compromises the road towards remission. In an effort to mitigate these limitations, cancer-targeting approaches are currently experiencing a renaissance in the translation of new …