Open Access. Powered by Scholars. Published by Universities.®

Medicinal-Pharmaceutical Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Medicinal-Pharmaceutical Chemistry

Designing And Synthesizing A Warhead-Fragment Inhibitory Ligand For Ivyp1 Through Fragment-Based Drug Discovery, Samuel Moore Dec 2022

Designing And Synthesizing A Warhead-Fragment Inhibitory Ligand For Ivyp1 Through Fragment-Based Drug Discovery, Samuel Moore

Symposium of Student Scholars

Fragment-based drug discovery (FBDD) is a powerful tool for developing anticancer and antimicrobial agents. Within this, magnetic resonance spectroscopy (NMR) provides a comprehensive qualitative and quantitative approach to screening and validating weak and robust binders with targeted proteins, making NMR among the most attractive strategies in FBDD. Inhibitor of vertebrate lysozyme (Ivyp1) of P. aeruginosa serves as an excellent target because of its active cellular location and implications in clinical prognosis for cystic fibrosis and immunocompromised patients. This study uses current NMR and biophysical techniques to develop a covalent, fragment-linked warhead inhibitor for Ivyp1 through synthetic methods, warhead linking, and …


Interpretable Machine Learning Models For Molecular Design Of Tyrosine Kinase Inhibitors Using Variational Autoencoders And Perturbation-Based Approach Of Chemical Space Exploration, Keerthi Krishnan, Ryan Kassab, Steve Agajanian, Gennady M. Verkhivker Sep 2022

Interpretable Machine Learning Models For Molecular Design Of Tyrosine Kinase Inhibitors Using Variational Autoencoders And Perturbation-Based Approach Of Chemical Space Exploration, Keerthi Krishnan, Ryan Kassab, Steve Agajanian, Gennady M. Verkhivker

Mathematics, Physics, and Computer Science Faculty Articles and Research

In the current study, we introduce an integrative machine learning strategy for the autonomous molecular design of protein kinase inhibitors using variational autoencoders and a novel cluster-based perturbation approach for exploration of the chemical latent space. The proposed strategy combines autoencoder-based embedding of small molecules with a cluster-based perturbation approach for efficient navigation of the latent space and a feature-based kinase inhibition likelihood classifier that guides optimization of the molecular properties and targeted molecular design. In the proposed generative approach, molecules sharing similar structures tend to cluster in the latent space, and interpolating between two molecules in the latent space …


Integrating Conformational Dynamics And Perturbation-Based Network Modeling For Mutational Profiling Of Binding And Allostery In The Sars-Cov-2 Spike Variant Complexes With Antibodies: Balancing Local And Global Determinants Of Mutational Escape Mechanisms, Gennady M. Verkhivker, Steve Agajanian, Ryan Kassab, Keerthi Krishnan Jul 2022

Integrating Conformational Dynamics And Perturbation-Based Network Modeling For Mutational Profiling Of Binding And Allostery In The Sars-Cov-2 Spike Variant Complexes With Antibodies: Balancing Local And Global Determinants Of Mutational Escape Mechanisms, Gennady M. Verkhivker, Steve Agajanian, Ryan Kassab, Keerthi Krishnan

Mathematics, Physics, and Computer Science Faculty Articles and Research

n this study, we combined all-atom MD simulations, the ensemble-based mutational scanning of protein stability and binding, and perturbation-based network profiling of allosteric interactions in the SARS-CoV-2 spike complexes with a panel of cross-reactive and ultra-potent single antibodies (B1-182.1 and A23-58.1) as well as antibody combinations (A19-61.1/B1-182.1 and A19-46.1/B1-182.1). Using this approach, we quantify the local and global effects of mutations in the complexes, identify protein stability centers, characterize binding energy hotspots, and predict the allosteric control points of long-range interactions and communications. Conformational dynamics and distance fluctuation analysis revealed the antibody-specific signatures of protein stability and flexibility of the …


Biophysical Insight Into The Sars-Cov2 Spike–Ace2 Interaction And Its Modulation By Hepcidin Through A Multifaceted Computational Approach, Hamid Hadi-Alijanvand, Luisa Di Paola, Guang Hu, David M. Leitner, Gennady M. Verkhivker, Peixin Sun, Humanath Poudel, Alessandro Giuliani May 2022

Biophysical Insight Into The Sars-Cov2 Spike–Ace2 Interaction And Its Modulation By Hepcidin Through A Multifaceted Computational Approach, Hamid Hadi-Alijanvand, Luisa Di Paola, Guang Hu, David M. Leitner, Gennady M. Verkhivker, Peixin Sun, Humanath Poudel, Alessandro Giuliani

Mathematics, Physics, and Computer Science Faculty Articles and Research

At the center of the SARS-CoV2 infection, the spike protein and its interaction with the human receptor ACE2 play a central role in the molecular machinery of SARS-CoV2 infection of human cells. Vaccine therapies are a valuable barrier to the worst effects of the virus and to its diffusion, but the need of purposed drugs is emerging as a core target of the fight against COVID19. In this respect, the repurposing of drugs has already led to discovery of drugs thought to reduce the effects of the cytokine storm, but still a drug targeting the spike protein, in the infection …


Bis(Tryptophan) Amphiphiles: Design, Synthesis And Efficacy As Antimicrobial Agents, Michael Mckeever Apr 2022

Bis(Tryptophan) Amphiphiles: Design, Synthesis And Efficacy As Antimicrobial Agents, Michael Mckeever

Dissertations

Amphiphiles play important roles in nature. These molecules contain both hydrophilic and hydrophobic regions, leading to some astonishing properties. The lipid bilayer of the cell membrane is a fascinating organization of amphiphilic phospholipids. Natural and synthetic amphiphiles, such as antimicrobial peptides, interact with the cell membrane. Such interactions can impact transport of molecules across the cell membrane, disrupting cell functions. In this work, a library of tryptophan-containing amphiphiles was synthesized and their antimicrobial properties were explored.

First, a library of bis(tryptophan) amphiphiles was synthesized. Preparation included a coupling reaction of a diamine with tryptophan residues, via their carboxy-termini, at …


Computer Simulations And Network-Based Profiling Of Binding And Allosteric Interactions Of Sars-Cov-2 Spike Variant Complexes And The Host Receptor: Dissecting The Mechanistic Effects Of The Delta And Omicron Mutations, Gennady M. Verkhivker, Steve Agajanian, Ryan Kassab, Keerthi Krishnan Apr 2022

Computer Simulations And Network-Based Profiling Of Binding And Allosteric Interactions Of Sars-Cov-2 Spike Variant Complexes And The Host Receptor: Dissecting The Mechanistic Effects Of The Delta And Omicron Mutations, Gennady M. Verkhivker, Steve Agajanian, Ryan Kassab, Keerthi Krishnan

Mathematics, Physics, and Computer Science Faculty Articles and Research

In this study, we combine all-atom MD simulations and comprehensive mutational scanning of S-RBD complexes with the angiotensin-converting enzyme 2 (ACE2) host receptor in the native form as well as the S-RBD Delta and Omicron variants to (a) examine the differences in the dynamic signatures of the S-RBD complexes and (b) identify the critical binding hotspots and sensitivity of the mutational positions. We also examined the differences in allosteric interactions and communications in the S-RBD complexes for the Delta and Omicron variants. Through the perturbation-based scanning of the allosteric propensities of the SARS-CoV-2 S-RBD residues and dynamics-based network centrality and …


Sars-Cov-2 Main Protease Inhibitors Repurposed For Hiv-1 Protease Binding, Jacob Minkkinen Apr 2022

Sars-Cov-2 Main Protease Inhibitors Repurposed For Hiv-1 Protease Binding, Jacob Minkkinen

CSB/SJU Distinguished Thesis

Severe acute respiratory syndrome (SARS-CoV-2) led to the COVID-19 global pandemic, with over 460 million cases of infection and over 6 million deaths since the start of the pandemic. SARS-CoV-2 is a retrovirus that utilizes a main protease (Mpro). Mpro is a catalytic cys/his protease. Several treatments were proposed to stop the pandemic including repurposing drugs to inhibit the Mpro. Another retrovirus that uses a protease is human immunodeficiency virus (HIV-1) which has been a global epidemic for 40 years and is a devastating disease that attacks the immune system. HIV-1 has infected 79.5 million people and has killed an …


The Development Of Inhibitors For Sars-Cov-2 Orf8, My Thanh Thao Nguyen Apr 2022

The Development Of Inhibitors For Sars-Cov-2 Orf8, My Thanh Thao Nguyen

CSB/SJU Distinguished Thesis

An unexpected outbreak of SARS-CoV-2 caused a worldwide pandemic in 2020. Many repurposed drugs were tested, but there are currently only three FDA approved antivirals (Merck’s antiviral Molnupiravir, Pfizer’s antiviral Paxlovid, and Remdisivir).1 Most of the antiviral drugs tested SARS-CoV-2 main protease and RNA-dependent RNA polymerase. However, it is important to explore different drug targets of SARS-CoV-2 to prepare for the virus mutations of the future. This research looks at an alternative approach in which SARSCoV- 2 Open Reading Frame 8 (ORF8), which has been shown to be a rapidly evolving hypervariable gene, was chosen to be the protein of …


Structural And Computational Studies Of The Sars-Cov-2 Spike Protein Binding Mechanisms With Nanobodies: From Structure And Dynamics To Avidity-Driven Nanobody Engineering, Gennady M. Verkhivker Mar 2022

Structural And Computational Studies Of The Sars-Cov-2 Spike Protein Binding Mechanisms With Nanobodies: From Structure And Dynamics To Avidity-Driven Nanobody Engineering, Gennady M. Verkhivker

Mathematics, Physics, and Computer Science Faculty Articles and Research

Nanobodies provide important advantages over traditional antibodies, including their smaller size and robust biochemical properties such as high thermal stability, high solubility, and the ability to be bioengineered into novel multivalent, multi-specific, and high-affinity molecules, making them a class of emerging powerful therapies against SARS-CoV-2. Recent research efforts on the design, protein engineering, and structure-functional characterization of nanobodies and their binding with SARS-CoV-2 S proteins reflected a growing realization that nanobody combinations can exploit distinct binding epitopes and leverage the intrinsic plasticity of the conformational landscape for the SARS-CoV-2 S protein to produce efficient neutralizing and mutation resistant characteristics. Structural …


Allosteric Determinants Of The Sars-Cov-2 Spike Protein Binding With Nanobodies: Examining Mechanisms Of Mutational Escape And Sensitivity Of The Omicron Variant, Gennady M. Verkhivker Feb 2022

Allosteric Determinants Of The Sars-Cov-2 Spike Protein Binding With Nanobodies: Examining Mechanisms Of Mutational Escape And Sensitivity Of The Omicron Variant, Gennady M. Verkhivker

Mathematics, Physics, and Computer Science Faculty Articles and Research

Structural and biochemical studies have recently revealed a range of rationally engineered nanobodies with efficient neutralizing capacity against the SARS-CoV-2 virus and resilience against mutational escape. In this study, we performed a comprehensive computational analysis of the SARS-CoV-2 spike trimer complexes with single nanobodies Nb6, VHH E, and complex with VHH E/VHH V nanobody combination. We combined coarse-grained and all-atom molecular simulations and collective dynamics analysis with binding free energy scanning, perturbation-response scanning, and network centrality analysis to examine mechanisms of nanobody-induced allosteric modulation and cooperativity in the SARS-CoV-2 spike trimer complexes with these nanobodies. By quantifying energetic and allosteric …