Open Access. Powered by Scholars. Published by Universities.®

Inorganic Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Electrochemistry

Discipline
Institution
Publication Year
Publication

Articles 1 - 19 of 19

Full-Text Articles in Inorganic Chemistry

High Resolution Mass Spectrometry As A Platform For The Analysis Of Polyoxometalates, Their Solution Phase Dynamics, And Their Biological Interactions., Daniel T. Favre Mar 2024

High Resolution Mass Spectrometry As A Platform For The Analysis Of Polyoxometalates, Their Solution Phase Dynamics, And Their Biological Interactions., Daniel T. Favre

Doctoral Dissertations

Polyoxometalates (POMs) are a class of inorganic molecule of increasing interest to the inorganic, bioinorganic and catalytic communities among many others. While their prevalence in research has increased, tools and methodologies for the analysis of their fundamental characteristics still need further development. Decavanadate (V10) specifically has been postulated to have several unique properties that have not been confirmed independently. Mass spectrometry (MS) and its ability to determine the composition of solution phase species by both mass and charge is uniquely well suited to the analysis of POMs. In this work we utilized high-resolution mass spectrometry to characterize V10 in aqueous …


From Waste To Energy: The Electrochemical Reduction Of Co2 Using Recycled Nanostructured Catalysts, Ibrahim Badawy Jul 2023

From Waste To Energy: The Electrochemical Reduction Of Co2 Using Recycled Nanostructured Catalysts, Ibrahim Badawy

Theses and Dissertations

The reduction of carbon dioxide (CO2RR) using electrochemistry is a promising solution for the burgeoning global energy crisis. The overall vision of its implementation relies on renewable energy sources to power the reaction creating carbon neutral products and effectively closing the carbon cycle. Research in this field has come a long way since its inception in the mid-1900s. However, there remain significant hurdles and important considerations to overcome in order to reach full commercialization. Most electrocatalysts tested for CO2RR have been designed solely for maximum performance while ignoring the environmental consequences if such a material were …


The Study Of Corrosion On Additive-Manufactured Metals., Braydan Daniels May 2023

The Study Of Corrosion On Additive-Manufactured Metals., Braydan Daniels

Electronic Theses and Dissertations

The purpose of this study was to investigate and compare the corrosion mechanisms between wrought and additive-manufactured (3D-printed) copper and stainless steel. The experimental procedure consisted of measuring the open circuit potential, electrochemical impedance spectroscopy, linear sweep voltammetry, Tafel analysis, surface topology, and scanning electron microscopy for each metal within salt water, tap water, sulfuric acid, and synthetic body fluid (excluding copper in synthetic body fluid).

Overall, printed stainless steel was more corrosion-resistant than wrought stainless steel in tap water and synthetic body fluid based on OCP, LSV, and surface topology results. Additionally, printed copper was more corrosion-resistant than wrought …


Carbon Dioxide Reduction On Large Area Liquid Metal Gallium-Indium Electrocatalysts, Thomas Hollis May 2023

Carbon Dioxide Reduction On Large Area Liquid Metal Gallium-Indium Electrocatalysts, Thomas Hollis

Chemistry & Biochemistry Undergraduate Honors Theses

Carbon dioxide (CO2) is widely known as a greenhouse gas that contributes to global warming due to the burning of fossil fuels. The carbon dioxide reduction reaction (CO2RR) is widely studied to reutilize CO2 to useful products, including methane, ethane, and carbon monoxide. This project studies the use of liquid metal gallium-indium as an electrocatalyst to perform CO2 reduction to carbon monoxide (CO) or possibly solid carbon in various solutions. Gallium-indium is characterized and studied through its “wetting” properties and adhesion to substrate foil through the measurement of contact angles inside solution. These liquid …


Dissolution And Electrochemical Recovery Of Uo2, Uo3, And U3o8 In Ionic Liquids, Katherine Iolani Thornock Luebke Aug 2022

Dissolution And Electrochemical Recovery Of Uo2, Uo3, And U3o8 In Ionic Liquids, Katherine Iolani Thornock Luebke

UNLV Theses, Dissertations, Professional Papers, and Capstones

This research explores a novel method of increasing the solubility of uranium oxides and other actinide oxides in room temperature ionic liquids (IL) using direct dissolution. The goal is to further expand our knowledge of actinide dissolution and possible nuclear fuel cycle material applications using ionic liquids. The novelty of the methods is focused on the use of oxidizing gas generated using air passed through an ozone generator. While examples of dissolution exist in IL using acidic functionalized ionic liquids, the solubility of all possible oxide species was not demonstrated. Also, the addition of aqueous acid to IL containing actinide …


The Utilization Of Metal-Ligand Cooperativity For Electrocatalytic Reduction And Catalytic Hydration., Steven Cronin Dec 2020

The Utilization Of Metal-Ligand Cooperativity For Electrocatalytic Reduction And Catalytic Hydration., Steven Cronin

Electronic Theses and Dissertations

Small molecules are building blocks for developing larger materials. These small molecules could be extremely small, such as hydrogen, or larger such as a nitrile, but their impact on the global economy is massive. This dissertation describes a catalyst for three reactions involving small molecules; 1) the hydrogen evolution reaction, 2) the carbon dioxide reduction reaction, 3) nitrile hydration. The catalyst Zn(DMTH) (DMTH = diacetyl-2-(4-methyl-3-thiosemicarbazonate)-3-(2-pyridinehydrazonato)) use “metal-ligand cooperativity” between the Lewis acid Zn(II) metal ion and an uncoordinated Lewis base nitrogen in the ligand framework to activate substrates. The complex has been analyzed via NMR, UV/Vis, single crystal X-ray crystallography, …


Transition Metal Chalcogenide Hybrid Systems As Catalysts For Energy Conversion And Biosensing, Siddesh Umapathi Jan 2020

Transition Metal Chalcogenide Hybrid Systems As Catalysts For Energy Conversion And Biosensing, Siddesh Umapathi

Doctoral Dissertations

"Generation of hydrogen and oxygen through catalyst-aided water splitting which has immense applications in metal air batteries, PEM fuel cells and solar to fuel energy production, has been one of the critical topics in recent times. The state of art oxygen evolution reaction (OER), oxygen reduction reaction (ORR), hydrogen evolution reaction (HER) catalysts are mostly comprised of precious metals. The current challenge lies in replacing these precious metal-based catalysts with non-precious earth-abundant materials without compromising catalytic efficiency.

This research explores mixed metal selenides containing Fe-Ni, Fe-Co and RhSe which were hydrothermally synthesized and/or electrodeposited and tested for OER and ORR …


Synthesis, Characterization, And Applications Of Group 13 And 14 Complexes Of Chelating Formazanate Ligands, Ryan R. Maar Jul 2019

Synthesis, Characterization, And Applications Of Group 13 And 14 Complexes Of Chelating Formazanate Ligands, Ryan R. Maar

Electronic Thesis and Dissertation Repository

This thesis describes the synthesis and characterization of group 13 (boron and aluminum) and group 14 (silicon, germanium, and tin) complexes supported by chelating formazanate [R1-N-N=C(R3)-N=N-R5] ligands. The resulting complexes are redox-active and often luminescent. Chapters two to four describe the synthesis and characterization of boron formazanate adducts. The work in these chapters demonstrates that through structural modification of the formazanate ligand, solid-state- and NIR photoluminescence can be achieved. Furthermore, the formation of an oxoborane (B=O) afforded a highly photoluminescent formazanate adduct due to the structural rigidity imposed by the B=O bond. These …


Synthesis And Characterization Of A Homogeneous Cobalt Catalyst For The Hydrogenation Of Acetone To Isopropanol, Joselyn G. Molina May 2019

Synthesis And Characterization Of A Homogeneous Cobalt Catalyst For The Hydrogenation Of Acetone To Isopropanol, Joselyn G. Molina

Honors Projects

To lessen environmentalstrain and decrease dependency on noble metals for catalysis, first-row metals are continuously being explored as alternative catalysts for reactions of interest, particularly those that close the carbon cycle or promote fuel production. Recently, homogeneous cobalt catalysts have been shown to be viable options for effective hydrogenation of C-O double bonds, with cobalt-triphos being of particular interest. Here, we report the characterization of synthesized a cobalt-triphos complex by nuclear magnetic resonance spectroscopy and optical spectroscopy. Analysis of the electrochemistry of the cobalt-triphos complex suggests promising electrocatalytic capability for the hydrogenation of acetone to produce isopropanol.


Surface Immobilization Of Terpyridine Compounds, Elizabeth Hallett May 2019

Surface Immobilization Of Terpyridine Compounds, Elizabeth Hallett

Chemical Engineering Undergraduate Honors Theses

The deoxydehydration (DODH) of polyols to alkenes is a promising method of producing high-value chemical feedstocks from biomass-derived materials. Current catalytic systems for DODH require the use of costly reducing agents that generate stoichiometric amounts of chemical waste. Immobilizing catalysts on electrode surfaces using chemical linking groups eliminates the need for sacrificial reductants. In this work, glassy carbon electrodes were modified with 4’-(3,4-dihydroxyphenyl)-2,2’:6’,2’’-terpyridine to investigate o-benzoquinone as a potential linking group for DODH, and possibly for other reactions. Previous studies involving electrodes modified with quinone-containing compounds have primarily been focused on catalyzing the oxidation of NADH; the nature or …


Fundamental Chemistry Related To The Separations And Coordination Of Actinium-225, Thorium-227, And Technetium-99, Jasmine L. Hatcher Sep 2018

Fundamental Chemistry Related To The Separations And Coordination Of Actinium-225, Thorium-227, And Technetium-99, Jasmine L. Hatcher

Dissertations, Theses, and Capstone Projects

This work explores the fundamental chemistry of actinium, thorium, and technetium in an effort to develop methodologies which help to address complications specific to each of these elements. Developing fundamental knowledge in inorganic chemistry has the power to meaningfully address a number of real world problems. By using simple systems and experiments like following an electron or changing the solvent system, we are able to gain invaluable information which can be used to address major issues.

Actinium-225 (t½: 9.92 d) is an alpha-emitting radionuclide with nuclear properties well suited for alpha therapy of malignant tumors. The present global …


Photoelectrochemical Studies On Non-Noble Metal Based Catalysts Towards Tandem Solar Water Splitting, Arun Siddarth Sridhar May 2018

Photoelectrochemical Studies On Non-Noble Metal Based Catalysts Towards Tandem Solar Water Splitting, Arun Siddarth Sridhar

Dissertations

Photoelectrochemical (PEC) water splitting makes direct use of solar energy incident on semiconductor photoelectrodes, and it is a convenient, economic option to produce high purity hydrogen at low temperatures. The use of multiple light absorbers can increase overall solar energy utilization and provide a solution to the trade-off between overall band gap and band edge positioning of photoelectrodes specific to solar water oxidation and water reduction. The study of non-noble metal based catalysts for hydrogen evolution reaction (HER) and oxygen evolution reactions (OER) are essential for economic practical commercialization of photo-electrolyzers. This dissertation focuses on the use of a variety …


The Electrochemical Deposition Of Samarium And Europium Dissolved In Ionic Liquid Solvent, Bea Martinez Dec 2017

The Electrochemical Deposition Of Samarium And Europium Dissolved In Ionic Liquid Solvent, Bea Martinez

UNLV Theses, Dissertations, Professional Papers, and Capstones

Rare-earth elements include the lanthanide series in the periodic table with the addition of scandium and yttrium. China produces approximately 95% of the world’s rare-earths supply and is the largest consumer of the world’s rare earth supply. Domestic production of rare-earth metals is a priority in the US. The domestic demand for rare-earth elements is largely based on their use in electronic devices, catalytic converters, and more importantly defense applications. Therefore, China’s monopoly of rare-earth elements is viewed as a threat to national security. Although capital investments have resulted in an increase in domestic mining and refining of rare-earth materials, …


An Electrochemical Characterization Of A Vanadium-Based Deoxydehydration Catalyst, Joel Eric Baker May 2017

An Electrochemical Characterization Of A Vanadium-Based Deoxydehydration Catalyst, Joel Eric Baker

Graduate Theses and Dissertations

Alternative methods for the conversion of polyols into olefins, be it for carbon storage or hydrocarbon fuel production, have become prevalent in today’s chemical industry. One process in particular, deoxydehydration (DODH) has been proven effective in taking sustainable biomass derivatives and converting them through the utilization of various homogenous metal catalysts. While this process may show productive yields and material conversion, it is hindered by the need of a sacrificial reductant. This makes a novel process economically unviable and relatively unused outside of scientific research. That fact begs the question: Can the process be improved? It is proposed here that …


Synthesis Of Metal-Containing Polymers And Stable Organic Radical-Containing Polymers And Their Use As Advanced Functional Materials, Joseph A. Paquette Dec 2016

Synthesis Of Metal-Containing Polymers And Stable Organic Radical-Containing Polymers And Their Use As Advanced Functional Materials, Joseph A. Paquette

Electronic Thesis and Dissertation Repository

The work presented in this thesis details the synthesis and characterization of two different families of multifunctional polymers. The first family involved the incorporation of stable 6-oxoverdazyl radicals into polymer scaffolds. This was originally achieved by the polymerization of the radical precursors, phenyl- and isopropyl-6-oxotetrazanes, followed by post-polymerization oxidation to afford the phenyl- and isopropyl-6-oxoverdazyl polymers. A second methodology involved the direct polymerization of isopropyl-6-oxoverdazyl radicals using ring-opening metathesis polymerization (ROMP) to afford polymers with controlled molecular weights and narrow molecular weight distributions. The polymers were characterized by the close comparison of the physical and spectroscopic properties …


Oxygen Reduction Reaction By Copper Complex Based Electrocatalysts, Congling Zhang May 2015

Oxygen Reduction Reaction By Copper Complex Based Electrocatalysts, Congling Zhang

Doctoral Dissertations

My research focuses on catalysis of oxygen reduction reaction (ORR) by a series of Cu(II) [copper with positive two valence] -1,2,4-triazole complex-based electrocatalysts at the cathode of PEMFC (polymer electrolyte membrane fuel cell), an efficient and environmental friendly energy conversion system compared to internal combustion engines in use today. The sluggish kinetics of ORR considerably limited the performance of PEMFCs. Understanding of ORR mechanism is important for developing affordable, active and durable ORR catalysts for such devices.

The first part of my work focused on improving the ORR performance of Cu(II)-1,2,4-triazole complex-based catalysts in an acidic environment by exploring synthesis …


The Electrochemistry Of Hydrogen Peroxide On Uranium Dioxide And The Modelling Of Used Nuclear Fuel Corrosion Under Permanent Disposal Conditions, Linda Wu Apr 2014

The Electrochemistry Of Hydrogen Peroxide On Uranium Dioxide And The Modelling Of Used Nuclear Fuel Corrosion Under Permanent Disposal Conditions, Linda Wu

Electronic Thesis and Dissertation Repository

This thesis reports a series of investigations examining the corrosion process of used nuclear fuel under permanent disposal conditions. The motivation of the project is that the safety assessment of deep geological disposal of spent nuclear fuel requires a fundamental understanding of the processes controlling fuel corrosion which could lead to the release of radionuclides to the geosphere from a failed container.

One primary objective of this project was to develop a computational model in order to simulate fuel corrosion under the disposal conditions. A series of simulations based on COMSOL were designed and developed to determine the influence of …


Anodic Strategies For The Covalent Attachment Of Molecules To Electrodes Through Ethynyl And Vinyl Linkages, Matthew Vincent Sheridan Jan 2014

Anodic Strategies For The Covalent Attachment Of Molecules To Electrodes Through Ethynyl And Vinyl Linkages, Matthew Vincent Sheridan

Graduate College Dissertations and Theses

Substrates with localized, organic radicals have the ability to attack `inert' surfaces to form covalent bonds between the substrate and an atom at the surface. These radicals can be generated in electrochemical experiments with substrates bearing an electroactive moiety. The moiety after oxidation (loss of an electron) or reduction (gain of an electron) generates the active radical. Electron transfer reactions at an electrode surface generate a high population of these radicals, thereby facilitating attachment.

The electrochemical oxidations of compounds containing terminal alkynes and alkenes were found to be effective methods for covalent attachment to glassy carbon, gold, and platinum electrodes. …


New Electrochemical And Optical Detection Methods For Biological And Environmental Applications, Royce Nicholas Dansby-Sparks Aug 2010

New Electrochemical And Optical Detection Methods For Biological And Environmental Applications, Royce Nicholas Dansby-Sparks

Doctoral Dissertations

Detection of chromium and vanadium is of interest for biomedical and environmental applications. The two metals have narrow limits between being essential and toxic for humans. Ultra-sensitive techniques have been studied to measure Cr and V at low concentrations found in human blood and environmental samples. Bismuth film and mercury-alloy electrodes have been developed as alternatives to traditional Hg-based electrodes for Cr and V detection. While catalytic adsorptive stripping voltammetry (CAdSV) has been used to detect Cr and V, little is known about the process. The mechanisms of CAdSV have been probed to provide a better understanding of its exceptional …