Open Access. Powered by Scholars. Published by Universities.®

Inorganic Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Inorganic Chemistry

Cationic Divalent Metal Sites (M = Mn, Fe, Co) Operating As Both Nitrene-Transfer Agents And Lewis Acids Toward Mediating The Synthesis Of Three- And Five-Membered N-Heterocycles, Suraj Kumar Sahoo, Brent Harfmann, Lin Ai, Qiuwen Wang, Sudip Mohapatra, Amitava Choudhury, Pericles Stavropoulos Jul 2023

Cationic Divalent Metal Sites (M = Mn, Fe, Co) Operating As Both Nitrene-Transfer Agents And Lewis Acids Toward Mediating The Synthesis Of Three- And Five-Membered N-Heterocycles, Suraj Kumar Sahoo, Brent Harfmann, Lin Ai, Qiuwen Wang, Sudip Mohapatra, Amitava Choudhury, Pericles Stavropoulos

Chemistry Faculty Research & Creative Works

The tripodal compounds [(TMG3trphen)MII-solv](PF6)2 (M = Mn, Fe, Co; solv = MeCN, DMF) and bipodal analogues [(TMG2biphen)MII(NCMe)x](PF6)2 (x = 3 for Mn, Fe; x = 2 for Co) and [(TMG2biphen)MIICl2] have been synthesized with ligands that feature a triaryl- or diarylmethyl-amine framework and superbasic tetramethylguanidinyl residues (TMG). The dicationic M(II) sites mediate catalytic nitrene-transfer reactions between the imidoiodinane PhI═NTs (Ts = tosyl) and a panel of styrenes in MeCN to afford aziridines and low yields of imidazolines (upon …


Epitaxial Single-Domain Cu-Btc Metal-Organic Framework Thin Films And Foils By Electrochemical Conversion Of Cuprous Oxide, Xiaoting Zhang, Bin Luo, Avishek Banik, John Z. Tubbesing, Jay A. Switzer Apr 2023

Epitaxial Single-Domain Cu-Btc Metal-Organic Framework Thin Films And Foils By Electrochemical Conversion Of Cuprous Oxide, Xiaoting Zhang, Bin Luo, Avishek Banik, John Z. Tubbesing, Jay A. Switzer

Chemistry Faculty Research & Creative Works

Metal-Organic Frameworks (MOFs) Are an Important Class of Crystalline Porous Materials with Extensive Chemical and Structural Merits. However, the Fabrication of MOF Thin Films Oriented Along All Crystallographic Axes to Achieve Well-Aligned Nanopores and Nanochannels with Uniform Apertures Remains a Challenge. Here, We Achieved Highly Crystalline Single-Domain MOF Thin Films with the [111] Out-Of-Plane Orientation by Electrochemical Conversion of Cuprous Oxide. Copper(II)-Benzene-1,3,5-Tricarboxylate, Cu3(BTC)2 (Referred to as Cu-BTC), is a Well-Known Metal-Organic Open Framework Material with a Cubic Crystal System. Epitaxial Cu-BTC(111) Thin Films Were Manufactured by Electrochemical Oxidation of Cu2O(111) Films Electrodeposited on Single-Crystal Au(111). …


Epitaxial Electrodeposition Of Ordered Inorganic Materials, Jay A. Switzer, Avishek Banik Jan 2023

Epitaxial Electrodeposition Of Ordered Inorganic Materials, Jay A. Switzer, Avishek Banik

Chemistry Faculty Research & Creative Works

Conspectus The quality of technological materials generally improves as the crystallographic order is increased. This is particularly true in semiconductor materials, as evidenced by the huge impact that bulk single crystals of silicon have had on electronics. Another approach to producing highly ordered materials is the epitaxial growth of crystals on a single-crystal surface that determines their orientation. Epitaxy can be used to produce films and nanostructures of materials with a level of perfection that approaches that of single crystals. It may be used to produce materials that cannot be grown as large single crystals due to either economic or …