Open Access. Powered by Scholars. Published by Universities.®

Inorganic Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Inorganic Chemistry

Examining The Effects Of Amino And Thiolate Ligands On The Reactivity And Selectivity Of Palladium On Carbon In Hydrogenation Reactions, Eric Liu, Christina Li Aug 2018

Examining The Effects Of Amino And Thiolate Ligands On The Reactivity And Selectivity Of Palladium On Carbon In Hydrogenation Reactions, Eric Liu, Christina Li

The Summer Undergraduate Research Fellowship (SURF) Symposium

Heterogeneous catalysts are used widely by chemical and energy industries because they show high reactivity but often suffer from lack of selectivity. On the other hand, ligands are commonly used in homogeneous catalysts to control the reactivity and selectivity; however, the effects of the ligands on the steric and electronic properties of heterogeneous catalysts are less understood. We examine the effects of four different ligands: 1-adamantanethiol, 1-adamantylamine, 1-dodecanethiol, and 1-dodecylamine, for the commercial hydrogenation catalyst palladium on carbon. Hydrogenation reactions are used as a screening tool to see the behavior that the different catalysts exhibit in the presence of unsaturated …


Exploration Of A Unique Uranium Mediated Carbon-Carbon Radical Coupling Reaction, Zhengjia Tong, Caleb J. Tatebe, John J. Kiernicki, Matthias Zeller, Suzanne C. Bart Aug 2017

Exploration Of A Unique Uranium Mediated Carbon-Carbon Radical Coupling Reaction, Zhengjia Tong, Caleb J. Tatebe, John J. Kiernicki, Matthias Zeller, Suzanne C. Bart

The Summer Undergraduate Research Fellowship (SURF) Symposium

Designing an efficient nuclear fuel cycle has motivated decades of research on aqueous phase uranium chemistry. As such, studies are often limited by the formation of unreactive uranium oxides and/or solubility issues. Carrying out reactions in non-aqueous solvents addresses said problems and enables explorations into previously unattainable reactivity and fundamental properties of uranium. One such feat is the syntheses of uranium alkyls, as they permit research into bond interactions between uranium and carbon. Considering uranium’s oxophilicity, we investigated the relatively understudied uranium(III) alkyls—both their reactivity and reaction mechanism—towards oxygen-containing reagents. In an inert atmosphere, various uranium alkyl complexes were treated …