Open Access. Powered by Scholars. Published by Universities.®

Inorganic Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Inorganic Chemistry

Design And Surface Modification Of Noble Metal-Based Nanocatalysts, Xuchun Wang Aug 2022

Design And Surface Modification Of Noble Metal-Based Nanocatalysts, Xuchun Wang

Electronic Thesis and Dissertation Repository

This thesis investigates approaches to modifying the surface structure of noble metal-based nanocatalysts. Noble metal-based nanocatalysts, such as Pt and Pd, play a significant role in heterogeneous catalysis due to their capabilities in activating the cleavage or formation of chemical bonds, but still suffer from the high-cost issue and unsatisfied catalytic performance due to too strong or too weak adsorption of intermediates. Considering the surface specificity of heterogeneous catalysis, Bi, a cheap metal, was used to modify the surface of Pt- and Pd-based nanocatalysts. This thesis aims to unveil the role of Bi in improving their catalytic performance from both …


Doped Tio2 Nanowires For Applications In Dye Sensitized Solar Cells And Sacrifical Hydrogen Production, Qasem Alsharari Apr 2016

Doped Tio2 Nanowires For Applications In Dye Sensitized Solar Cells And Sacrifical Hydrogen Production, Qasem Alsharari

Electronic Thesis and Dissertation Repository

This thesis explores the synthesis of metal oxide 1-D nanowires using a sol-gel method in supercritical carbon dioxide (sc-CO2), as an environmental friendly enabling solvent. Porous nanowires were synthesized and their performance was tested in dye sensitized solar cell and sacrifical hydrogen production. Titanium isopropoxide (TIP) was used as a precursor for titania synthesis while copper, bismuth and indium were examined as dopants, respectively. The sol-gel reactions were catalyzed by acetic acid in CO2 at a temperature of 60 °C and pressure of 5000 psi. It was observed that acetic acid/monomer ratio > 4 produced nanowires while a …