Open Access. Powered by Scholars. Published by Universities.®

Inorganic Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Inorganic Chemistry

Pointing The Zinc Finger On Protein Folding: Energetic Investigation Into The Role Of The Metal-Ion In The Metal-Induced Protein Folding Of Zinc Finger Motifs, Inna Bakman-Sanchez Sep 2020

Pointing The Zinc Finger On Protein Folding: Energetic Investigation Into The Role Of The Metal-Ion In The Metal-Induced Protein Folding Of Zinc Finger Motifs, Inna Bakman-Sanchez

Dissertations, Theses, and Capstone Projects

Interactions between inorganic metal-ion cofactors and organic protein scaffolds are important for the proper structure and function of metalloproteins. Zinc finger proteins (ZFPs) are an example of proteins with such crucial metal-protein interactions. Incorporation of the Zn(II)-ion into ZFPs allows for their correct folding into structures that can carry out vital biological functions which include gene expression and tumor suppression. In addition, engineered ZFPs have shown to be promising genetic therapeutics in the clinic. And yet, there is still a gap in a quantitative understanding of the energetic contribution of the metal-protein interactions towards the structure and function of these …


The Reduction, Sequestration, And/Or Coordination Of Technetium-99 Utilizing Polyoxometalates And Nanomaterials, Colleen Mb Gallagher Jun 2020

The Reduction, Sequestration, And/Or Coordination Of Technetium-99 Utilizing Polyoxometalates And Nanomaterials, Colleen Mb Gallagher

Dissertations, Theses, and Capstone Projects

Research into the sequestration of radionuclides from aqueous media is being conducted due to the contamination of aqueous waste effluents and groundwater with highly toxic long-lived radionuclides. These contaminants are introduced into water and streams from legacy nuclear sites, nuclear reactor operations, nuclear fuel reprocessing, nuclear weapons testing, and plutonium production. A major contributor (~6%) to the waste from thermal neutron fission of uranium-235 is the radionuclide technetium-99 (99Tc). It is considered a long-lived radioisotope with a half-life of 2.1x105 years. It is a weak beta emitter with a max energy of 0.29 MeV and is most …