Open Access. Powered by Scholars. Published by Universities.®

Inorganic Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Inorganic Chemistry

An Exploration Of Basic Processes For Aqueous Electrochemical Production Of Hydrogen From Biomass Derived Molecules, Brian Fane Dec 2017

An Exploration Of Basic Processes For Aqueous Electrochemical Production Of Hydrogen From Biomass Derived Molecules, Brian Fane

Doctoral Dissertations

Polymer electrolyte membrane fuel cells(PEMFCs) are energy conversion devices with significant potential. The factors preventing them from becoming widespread concern production and distribution of hydrogen. Developing an efficient hydrogen infrastructure with an approachable rollout plan is an essential step towards the future of fuel cells. Water electrolysis is limited by the thermodynamics of the process, which leads to high electrical consumption and significant materials challenges. Alternative methods for cleanly generating hydrogen while using a lower cell voltage are required. PEM based electrolyzers can operate with a "depolarized anode", whereby they become significantly less power hungry.

This thesis explores two techniques …


Development And Implementation Of Redox-Active Olefin Polymerization Catalysts, William Curtis Anderson Jr. Dec 2017

Development And Implementation Of Redox-Active Olefin Polymerization Catalysts, William Curtis Anderson Jr.

Doctoral Dissertations

Investigating homogeneous polymerization catalysts has been a thriving area of chemistry in the academic realm for several decades now, and has helped drive the development of a range of materials, from designer plastics to cheap commodity polymers. Billions of pounds of these materials are produced every year, which ensures that continuing research in the area will be necessary to improve current processes and enable more economic use of our resources.

This dissertation showcases the Long group’s research in homogeneous polymerization catalysis and our impact on the field thus far. We show that intelligent design of redox-active catalysts allows for a …


Metal Oxyhalides And Halides For Use As Electrode Materials In Li-Ion Batteries, Jonathan Mark Powell Aug 2017

Metal Oxyhalides And Halides For Use As Electrode Materials In Li-Ion Batteries, Jonathan Mark Powell

Doctoral Dissertations

Synthesis of select metal halides and oxyhalides are explored in the form of direct fluorination using a fluidized bed reactor system, direct chlorination using hydrogen chloride gas, and a degradation dehydration reaction as novel methods towards the synthesis of these select metal halides and oxyhalides. The flexibility of the direct fluorination technique is demonstrated by the ability to vary the degree of fluorination based on the reaction conditions of temperature, time, and fluorine concentration. Conversion electrodes in the form of metal halides and metal oxyhalides are investigated as both anode and cathode materials for lithium ion batteries. The resulting electrochemical …


Synthesis And Characterization Of Novel Single-Site Titanosilicates With Targeted Connectivites And Geometries As Selective Oxidation Catalysts, Lena Elenchin May 2017

Synthesis And Characterization Of Novel Single-Site Titanosilicates With Targeted Connectivites And Geometries As Selective Oxidation Catalysts, Lena Elenchin

Doctoral Dissertations

The primary focus of this research was to synthesize and characterize two families of titanosilicate catalysts, first generation and second generation, that were single site, atomically dispersed with targeted connectivities to the silicate matrices but had different geometries about the active sites. First generation catalysts have tetrahedral active sites, while second generation catalysts have altered geometries for a more accessible active site, but maintain the same targeted connectivities.

A building block methodology is employed to prepare single site, isolated, atomically dispersed titanium active sites within a silicate matrix. The synthetic approach uses a molecular precursor, i.e., building block and the …


Thermally Robust And Redox Active Catalysts: Studying Their Behavior For Ethylene And L-Lactide Polymerization, Lauren Ashley Brown May 2017

Thermally Robust And Redox Active Catalysts: Studying Their Behavior For Ethylene And L-Lactide Polymerization, Lauren Ashley Brown

Doctoral Dissertations

The development of homogenous single-site catalysts has significantly impacted the field of organometallic chemistry. The well-defined structures of homogenous catalysts make it less cumbersome to understand and develop methods to tailor these compounds for specific catalytic processes. Currently, polymerization catalysis is a major division in organometallic chemistry due to the global demand for polymeric materials such as polyethylene (PE) and polypropylene (PP), based on their low-cost feedstock, remarkable mechanical properties, and their use in a wide range of applications. However, bioplastics have become a highly sought-after alternative to conventional petrochemical-based plastics due to their biodegradability and derivatization from renewable resources. …


Ion Separations: Achieving Selectivity Through Rational Design In Solvent Extraction And Crystallization Systems, Neil Justin Williams May 2017

Ion Separations: Achieving Selectivity Through Rational Design In Solvent Extraction And Crystallization Systems, Neil Justin Williams

Doctoral Dissertations

The selective separation of ions from aqueous solutions has been a difficult challenge to address in the separation sciences. The difficulties associated with selective separations of ions are due to a multitude of chemical and physical differences between them. Additionally, the term ions encompass both positively charged cations and their counter parts the negatively charge anions. The work covered in this dissertation discusses the difficulties encountered during the selective separation of both oxoanions and cations. Apart from the Introduction Chapter 1 and Conclusion Chapter 10, the selective separations oxoanions and cations will be discussed separately with the dissertation being …


Improving Predictive Capabilities Of Classical Cascade Theory For Nonproliferation Analysis, David Allen Vermillion May 2017

Improving Predictive Capabilities Of Classical Cascade Theory For Nonproliferation Analysis, David Allen Vermillion

Doctoral Dissertations

Uranium enrichment finds a direct and indispensable function in both peaceful and nonpeaceful nuclear applications. Today, over 99% of enriched uranium is produced by gas centrifuge technology. With the international dissemination of the Zippe archetypal design in 1960 followed by the widespread illicit centrifuge trafficking efforts of the A.Q. Khan network, traditional barriers to enrichment technologies are no longer as effective as they once were. Consequently, gas centrifuge technology is now regarded as a high-priority nuclear proliferation threat, and the international nonproliferation community seeks new avenues to effectively and efficiently respond to this emergent threat.

Effective response first requires an …