Open Access. Powered by Scholars. Published by Universities.®

Inorganic Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

University of Richmond

Chemistry Faculty Publications

Monolayer-protected clusters

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Inorganic Chemistry

Electrochemical Characterization Of Self-Assembled Monolayers On Gold Substrates Derived From Thermal Decomposition Of Monolayer-Protected Cluster Films, Michael C. Leopold, Tran T. Doan, Melissa J. Mullaney, Andrew F. Loftus, Christopher M. Kidd Aug 2015

Electrochemical Characterization Of Self-Assembled Monolayers On Gold Substrates Derived From Thermal Decomposition Of Monolayer-Protected Cluster Films, Michael C. Leopold, Tran T. Doan, Melissa J. Mullaney, Andrew F. Loftus, Christopher M. Kidd

Chemistry Faculty Publications

Networked films of monolayer-protected clusters (MPCs), alkanethiolate-stabilized gold nanoparticles, can be thermally decomposed to form stable gold on glass substrates that are subsequently modified with self-assembled monolayers (SAMs) for use as modified electrodes. Electrochemical assessment of these SAM-modified gold substrates, including double-layer capacitance measurements, linear sweep desorption of the alkanethiolates, and diffusional redox probing, all show that SAMs formed on gold supports formed from thermolysis of MPC films possess substantially higher defect density compared to SAMs formed on traditional evaporated gold. The density of defects in the SAMs on thermolyzed gold is directly related to the strategies used to assemble …


Sweep, Step, Pulse, And Frequency-Based Techniques Applied To Protein Monolayer Electrochemistry At Nanoparticle Interfaces, Debbie S. Campbell-Rance, Tran T. Doan, Michael C. Leopold Nov 2011

Sweep, Step, Pulse, And Frequency-Based Techniques Applied To Protein Monolayer Electrochemistry At Nanoparticle Interfaces, Debbie S. Campbell-Rance, Tran T. Doan, Michael C. Leopold

Chemistry Faculty Publications

Protein monolayer electrochemistry (PME), a strategy using synthetic platforms to study the electron transfer (ET) properties of adsorbed proteins, has been successfully applied to proteins adsorbed at monolayer-protected gold cluster (MPCs) assembled films, an adsorption interface shown to be an effective alternative, compared to traditional self-assembled monolayer (SAM) films, for the immobilization and study of ET proteins. Within PME studies, cyclic voltammetry (CV) remains the most commonly applied electrochemical technique in spite of several limitations that occur when the sweep technique is used at either platform. In particular, CV for PME at MPC films results in analysis complications stemming from …