Open Access. Powered by Scholars. Published by Universities.®

Inorganic Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Inorganic Chemistry

Synthesis, Characterization, And Spectroscopy Of Donor-Acceptor Charge Transfer Complexes, Dominic K. Kersi Dec 2017

Synthesis, Characterization, And Spectroscopy Of Donor-Acceptor Charge Transfer Complexes, Dominic K. Kersi

Chemistry and Chemical Biology ETDs

A series of square-planar metal (diimine)(dichalcogenolene) chromophoric complexes have been synthesized, characterized and studied spectroscopically. Studies conducted on diimineplatinum(II) dichalcogenolene complexes (LPtL’) using time resolved spectroscopic techniques such as transient absorption and emission, reveal a charge-separated excited state of the type dichalcogenolene → diimine charge-transfer (LL’CT) [(dichalcogenolene•+)Pt(diimine-) with an open shell donor-acceptor biradical character. Long-live excited state lifetimes were observed for these complexes upon visible photoexcitation of the LL’CT or MMLL’CT band. A direct linear relationship is observed to exist between photoluminescence rates, calculated SOC matrix elements, and 13C-NMR chemical shifts.

A series of …


Studying Metal-Organic Frameworks Via Solid-State Nmr: Gas Dynamics, Structure Determination, And Phase Transition, Yue Zhang Dec 2017

Studying Metal-Organic Frameworks Via Solid-State Nmr: Gas Dynamics, Structure Determination, And Phase Transition, Yue Zhang

Electronic Thesis and Dissertation Repository

Metal-organic frameworks (MOFs) are a class of microporous materials constructed from virtually endless combinations of metal centres and organic linkers. MOFs have attracted intense research interest in recent decades, since MOFs have outstanding properties such as extremely high surface area, tuneable pore topology, good stability, and many others. MOFs are also promising candidates for gas storage. In this work, solid-state NMR (SSNMR) spectroscopy has been investigated to study MOFs and their guest molecules, since SSNMR can provide information on the short-range environment about target nuclei and can also reveal the dynamics of guest molecules.

An introduction to MOFs and SSNMR …


The Electrochemical Deposition Of Samarium And Europium Dissolved In Ionic Liquid Solvent, Bea Martinez Dec 2017

The Electrochemical Deposition Of Samarium And Europium Dissolved In Ionic Liquid Solvent, Bea Martinez

UNLV Theses, Dissertations, Professional Papers, and Capstones

Rare-earth elements include the lanthanide series in the periodic table with the addition of scandium and yttrium. China produces approximately 95% of the world’s rare-earths supply and is the largest consumer of the world’s rare earth supply. Domestic production of rare-earth metals is a priority in the US. The domestic demand for rare-earth elements is largely based on their use in electronic devices, catalytic converters, and more importantly defense applications. Therefore, China’s monopoly of rare-earth elements is viewed as a threat to national security. Although capital investments have resulted in an increase in domestic mining and refining of rare-earth materials, …


Dynamic Studies Of Guest Molecules In Metal-Organic Frameworks And Zeolites Via Solid-State Nuclear Magnetic Resonance, Bowei Wu Oct 2017

Dynamic Studies Of Guest Molecules In Metal-Organic Frameworks And Zeolites Via Solid-State Nuclear Magnetic Resonance, Bowei Wu

Electronic Thesis and Dissertation Repository

Metal-organic frameworks (MOFs) are synthetic compounds with crystalline microporous structures, consisting of metal centres joined by organic linkers. Zeolites are a class of crystalline porous materials featuring negatively charged aluminosilicate frameworks and charge-balancing cations.

In this work, solid-state nuclear magnetic resonance (SSNMR) is used to probe guest molecule locations and dynamics in MOFs and zeolites, yielding detailed informations of guest motion within these porous materials

Chapter 2 describes SSNMR dynamic studies of 13CO2, 13CO and C2D4 adsorption behaviour in the α - zinc formate MOF, [Zn3(HCOO)6], which were performed …


Controlled Electrochemical Synthesis Of Single One-Dimensional Metal Nanochains Across Microgap Electrodes., Amareshwari Konutham Aug 2017

Controlled Electrochemical Synthesis Of Single One-Dimensional Metal Nanochains Across Microgap Electrodes., Amareshwari Konutham

Electronic Theses and Dissertations

This study mainly focuses on the fabrication of single one dimensional (1D) NP chains across the 5-micron gap of Au two electrode devices (TED). This has been achieved by electrochemical deposition of Ag onto the two electrodes, soaking the TED in 0.1 M Cetyltrimethyl ammonium bromide for 2-3 hours, and then close monitoring of the current as a function of time while a voltage across the two Ag coated Au electrodes in air. One dimensional Ag nanoparticle chain formation occurred by oxidation of Ag to Ag+ at the positive electrode followed by movement of Ag+ ions to the …


Real Time Monitoring Of Photocatalysis: An Application And Expansion Of The Quartz Crystal Microbalance, Perrin Godbold May 2017

Real Time Monitoring Of Photocatalysis: An Application And Expansion Of The Quartz Crystal Microbalance, Perrin Godbold

Senior Honors Projects, 2010-2019

There are many applications of photocatalytic chemistry, with hundreds of researchers investigating photocatalytic materials. Another method of investigation could aid these researchers and contribute significantly to this field. This study attempts to develop a new method of analysis by expanding the capabilities of the Quartz Crystal Microbalance (QCM) into the realm of photocatalysis. We coated QCM crystals with the stable and well-known photocatalyst, titanium dioxide, and utilized these coated crystals to begin to develop an analysis procedure for our modified instrument. Some indication of the QCM’s sensitivity was seen, but the UV irradiation elicited a frequency change independent of the …


Homogeneous Ligand-Centered Hydrogen Evolution And Hydrogen Oxidation : Exploiting Redox Non-Innocence To Drive Catalysis., Andrew Z. Haddad May 2017

Homogeneous Ligand-Centered Hydrogen Evolution And Hydrogen Oxidation : Exploiting Redox Non-Innocence To Drive Catalysis., Andrew Z. Haddad

Electronic Theses and Dissertations

Hydrogen is a promising carbon-free fuel / energy carrier and is an essential building block for many industrial and agricultural processes. Rising energy demands have ignited interest in the development of carbon-free and carbon neutral energy sources. In this context, hydrogen is an attractive candidate—being energy-dense, carbon-free—and easily accessible through a two-electron reduction of water. Accordingly, many electrochemical homogeneous catalyst systems have been studied, with a focus on understanding the mechanism of hydrogen evolution proceeding through metal-hydride intermediates. However, there has been a renaissance in hydrogen evolution reaction (HER) catalyst design, with many groups implicating ligand redox non-innocence as a …


Size And Shape Control In Metal Nanoparticles And Nanocomposites, Tomendro Subedi Jan 2017

Size And Shape Control In Metal Nanoparticles And Nanocomposites, Tomendro Subedi

Theses and Dissertations (Comprehensive)

This thesis describes major findings on the shape transformation of the precursor silver decahedral nanoparticles (AgDeNPs) with pentagonal symmetry and twin defects into silver pentagonal prism nanoparticles (AgPPNPs) using Br¯ as a shape selective reagent. Silica-encapsulation of the gold-plated AgDeNPs was also carried out forming ordered arrays of silica encapsulated gold-plated AgDeNPs (SiO2@Au@AgDeNPs) of different sizes. At first, synthetic procedures for AgDeNPs (pentagonal bipyramids), silver pentagonal rod nanoparticles (AgPRNPs) and gold-plating of AgDeNPs (Au@AgDeNPs) were optimized. Gold plating enhances the chemical stability of AgDeNPs and preserves the superior plasmonic properties of silver. This thesis deals with the transformation …