Open Access. Powered by Scholars. Published by Universities.®

Inorganic Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Inorganic Chemistry

Visible Light Generation And Mechanistic Investigation Of High-Valent Metal-Oxo Species Supported By Different Ligands, Seth Ellis Klaine Apr 2021

Visible Light Generation And Mechanistic Investigation Of High-Valent Metal-Oxo Species Supported By Different Ligands, Seth Ellis Klaine

Masters Theses & Specialist Projects

Numerous transition metal catalysts have been designed as biomimetic model compounds for the active site of metalloenzymes found throughout Nature, most notably cytochrome P450 monooxygenases that carry out the oxidative transformations of organic substrates with near-perfect chemo-, regio-, and stereo-selectivity. The primary active oxidants in catalytic and enzymatic cycles are fleeting high-valent metal-oxo intermediates where the oxo ligand can transfer to an organic substrate in a process known as oxygen atom transfer (OAT).

In the present work, porphyrin-manganese(III), salen-chromium(III), and salenmanganese( III) derivatives were successfully synthesized and spectroscopically characterized using 1H NMR and UV-Vis spectroscopies. A facile photochemical approach was …


Oxidative Depolymerization Of Lignin To Low Molecular Weight Aromatics, Yang Song Jan 2019

Oxidative Depolymerization Of Lignin To Low Molecular Weight Aromatics, Yang Song

Theses and Dissertations--Chemistry

To date, most lignocellulosic biorefinery strategies have focused on optimizing conversion of cellulose to ethanol, leaving lignin as an underutilized biomass constituent. Lignin is engineered by nature with the intent to protect plants from chemical and biological attack; this leaves lignin with high structural irregularity and recalcitrance, rendering conversion of the lignin macromolecule to valuable products particularly challenging. Nevertheless, given that the economics of cellulosic ethanol production are strongly dependent on the value that can be obtained for the lignin co-product, the successful valorization of lignin is a crucial step in the transition towards a bio-based economy.

This thesis focuses …


Photochemical Investigation Of High-Valent Metal-Oxo Intermediates Containing Corrole And Light-Harvesting Porphyrin Ligands, Jonathan Malone Jul 2018

Photochemical Investigation Of High-Valent Metal-Oxo Intermediates Containing Corrole And Light-Harvesting Porphyrin Ligands, Jonathan Malone

Masters Theses & Specialist Projects

In enzymatic and synthetic catalytic oxidations, high-valent iron-oxo intermediates play a vital role as the active oxidant. In this regard, many synthetic metal catalysts are designed as biomimetic models to resemble the active site of Cytochrome P450 enzymes (P450) which are the predominant oxidation catalysts in nature. Vitamin B12 cofactors, with a corrole-like structure corrin, are also utilized in some of the more difficult reactions in nature such as rearrangement and reductase reactions.

In this work, application of the promising photochemical method to corrolecontaining ligands systems showed much success in the generation of manganese(V)-oxo corrole intermediates using two electron-deficient corrole …


Oxidation Of Dibenzothiophene To Dibenzothiophene Using Metal Nanoparticles Supported On Silica, Karina Castillo Jan 2010

Oxidation Of Dibenzothiophene To Dibenzothiophene Using Metal Nanoparticles Supported On Silica, Karina Castillo

Open Access Theses & Dissertations

Silica and nanoparticles of Pt, Au, and Ag supported on silica were tested for the ability to oxidize dibenzothiophene (DBT) to sulfone. High performance liquid chromatography was used to study the removal of DBT from solution. In addition, X- ray diffraction, infrared spectroscopy and Raman Spectroscopy were used to characterize the product of the oxidation reaction. Further studies involved the use X-ray absorption spectroscopy to characterize the nanoparticle catalysts before and after the oxidation reaction.

To better understand the reaction, silica was synthesized at different pHs using three different acids. The acids used to synthesize the silica were HCl, HNO3, …