Open Access. Powered by Scholars. Published by Universities.®

Inorganic Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Inorganic Chemistry

Ligands For Complexation, Extraction, And Sensing Of Mercury(Ii) For Application To High-Level Waste (Hlw) At The Savannah River Site (Srs), Adenike O. Fasiku Nov 2021

Ligands For Complexation, Extraction, And Sensing Of Mercury(Ii) For Application To High-Level Waste (Hlw) At The Savannah River Site (Srs), Adenike O. Fasiku

FIU Electronic Theses and Dissertations

Mercury (Hg) separation and sensing is of high significance due to Hg(II) environmental mobility and toxicity. Furthermore, the use of Hg in nuclear applications has resulted in its accumulation in several DOE sites, such as in Oak Ridge and Savannah River reservations. Organic mercury species have been found in low activity waste (LAW) streams resulting from high-level waste (HLW) processing at the Savannah River Site (SRS), therefore posing a threat to humans and the environment. Mercury, being a soft Lewis acid, has a strong affinity for softer Lewis bases, such as S- or N-donor ligands. Therefore, we focus on …


The Synthesis Of Chemosensors For Toxic Analytes, Johnathan Hugh Broome Aug 2016

The Synthesis Of Chemosensors For Toxic Analytes, Johnathan Hugh Broome

Dissertations

A number of chemosensors have been designed and synthesized to target cations (Zn2+ions), neutral molecules (cathinones), charged molecules (aminoindanes), and anions. The Zn2+ ion sensor featured bistriazole designed binding unit and ferrocene signaling units. Characterization of Zn2+ ion binding was carried out with electrochemical techniques (CV and DPV), 1H-NMR, mass spectrometry, and molecular modelling. It exhibited a 1:1 binding stoichiometry with Zn2+ and had an affinity for ZnCl2 (Log K1:1 = 4.1 ± 0.02) over other Zn2+ salts.

The cathinone probe was designed to selectively bind mephedrone over common street drugs …


Molecular Probes For The Detection Of Zn2+ And Fe3+ Ions, Erendra Manandhar Dec 2014

Molecular Probes For The Detection Of Zn2+ And Fe3+ Ions, Erendra Manandhar

Dissertations

A number of molecular probes have been designed and synthesized for the detection of Zn2+ and Fe3+ ions. Two types of functional groups have been incorporated into the molecular scaffolds to utilize different fluorescent mechanisms. The first class of receptors contains a pyrene moiety. These molecular probes use the excimer mechanism for the detection of Zn2+ ion. The probes work well in an organic solvent with a detection limit of 20 nM (one ppb). Alternatives are made to make them water soluble, but this proved to be difficult. An interesting ion-induced self-assembly system will also be discussed. …