Open Access. Powered by Scholars. Published by Universities.®

Inorganic Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Inorganic Chemistry

Synthetic, Photophysical, And Catalytic Studies Of Light-Harvesting Macrocyclic Complexes, Fox Bratcher Apr 2022

Synthetic, Photophysical, And Catalytic Studies Of Light-Harvesting Macrocyclic Complexes, Fox Bratcher

Masters Theses & Specialist Projects

Chromophores are an important class of compounds in Nature and industry, with several hundred thousand tons produced annually as dyes and pigments. Alone, these compounds absorb light unto themselves; however, several of these compounds can be combined to produce a beneficial cascading transfer of energy to a core chromophore.

In this study, photophysical properties of several covalent and axially borondipyrromethene (BODIPY)-conjugated complexes of porphyrin and salphen scaffolds have been evaluated in a series of emission and catalytic studies. In the porphyrin systems, a beneficial excited energy transfer (EET) from the BODIPY moieties to the porphyrin core was observed; however, only …


Synthesis And Catalytic Oxidation Of Organic Substrates By Light-Harvesting Metalloporphyrins, Christian Alcantar Apr 2021

Synthesis And Catalytic Oxidation Of Organic Substrates By Light-Harvesting Metalloporphyrins, Christian Alcantar

Masters Theses & Specialist Projects

note: Some notation in this abstract may not appear exactly as formatted in the thesis.

In this work, ruthenium, iron, and manganese light-harvesting metalloporphyrins have been successfully synthesized to serve as biomimetic models of the active site of Cytochrome P450 for the development of a green and efficient oxidation catalyst. The covalent introduction of light-harvesting boron-dipyrrin (BODIPY) fluorophores on the porphyrin macrocycle allows for the absorption of a broader range of visible light in addition to that captured by the porphyrin aromatic system alone. It is expected that this core-antenna system will increase the absorbed light energy and transfer it …


Visible Light Generation And Mechanistic Investigation Of High-Valent Metal-Oxo Species Supported By Different Ligands, Seth Ellis Klaine Apr 2021

Visible Light Generation And Mechanistic Investigation Of High-Valent Metal-Oxo Species Supported By Different Ligands, Seth Ellis Klaine

Masters Theses & Specialist Projects

Numerous transition metal catalysts have been designed as biomimetic model compounds for the active site of metalloenzymes found throughout Nature, most notably cytochrome P450 monooxygenases that carry out the oxidative transformations of organic substrates with near-perfect chemo-, regio-, and stereo-selectivity. The primary active oxidants in catalytic and enzymatic cycles are fleeting high-valent metal-oxo intermediates where the oxo ligand can transfer to an organic substrate in a process known as oxygen atom transfer (OAT).

In the present work, porphyrin-manganese(III), salen-chromium(III), and salenmanganese( III) derivatives were successfully synthesized and spectroscopically characterized using 1H NMR and UV-Vis spectroscopies. A facile photochemical approach was …


Photochemical Investigation Of High-Valent Metal-Oxo Intermediates Containing Corrole And Light-Harvesting Porphyrin Ligands, Jonathan Malone Jul 2018

Photochemical Investigation Of High-Valent Metal-Oxo Intermediates Containing Corrole And Light-Harvesting Porphyrin Ligands, Jonathan Malone

Masters Theses & Specialist Projects

In enzymatic and synthetic catalytic oxidations, high-valent iron-oxo intermediates play a vital role as the active oxidant. In this regard, many synthetic metal catalysts are designed as biomimetic models to resemble the active site of Cytochrome P450 enzymes (P450) which are the predominant oxidation catalysts in nature. Vitamin B12 cofactors, with a corrole-like structure corrin, are also utilized in some of the more difficult reactions in nature such as rearrangement and reductase reactions.

In this work, application of the promising photochemical method to corrolecontaining ligands systems showed much success in the generation of manganese(V)-oxo corrole intermediates using two electron-deficient corrole …


Visible-Light Generation Of High-Valent Metal-Oxo Intermediates And A Biomimetic Oxidation Catalyzed By Manganese Porphyrins With Iodobenzene Diacetate, Ka Wai Kwong Oct 2016

Visible-Light Generation Of High-Valent Metal-Oxo Intermediates And A Biomimetic Oxidation Catalyzed By Manganese Porphyrins With Iodobenzene Diacetate, Ka Wai Kwong

Masters Theses & Specialist Projects

High-valent iron-oxo intermediates play central roles as active oxidants in enzymatic and synthetic catalytic oxidations. Many transition metal catalysts are designed for biomimetic studies of the predominant oxidation catalysts in Nature, the cytochrome P450 enzymes.

In this work, a new photochemical method to generate high-valent iron-oxo porphyrin models was discovered. As controlled by the electronic nature of porphyrin ligands, iron(IV)-oxo porphyrin radical cations (Compound I model) and iron(IV)-oxo porphyrin derivatives (Compound II model) were produced. These observations indicate that the photochemical reactions involve a heterolytic cleavage of O-Br in precursors to give a putative iron(V)-oxo intermediate, which might relax to …


Synthesis And Characterization Of Organic-Inorganic Hybrid Materials For Thermoelectric Devices, Paige M. Huzyak Apr 2016

Synthesis And Characterization Of Organic-Inorganic Hybrid Materials For Thermoelectric Devices, Paige M. Huzyak

Masters Theses & Specialist Projects

The development of organic-inorganic hybrid materials is of great interest in thermoelectrics for its potential to combine the desirable characteristics of both classes of materials. Thermoelectric materials must combine low thermal conductivity with high electrical conductivity, but in most materials, thermal and electrical conductivity are closely related and positively correlated. By combining the low thermal conductivity, flexibility, facile processing, and low cost of organic components with the high electrical conductivity and stability of inorganic components, materials with beneficial thermoelectric properties may be realized.

Here, we describe the synthesis and characterization of anthracene-containing organic-inorganic hybrid materials for thermoelectric purposes. Specifically, POSS-ANT …


Synthesis Of Perylenediimide-Functionalized Silsesquioxane Nanostructures, Lan Xu May 2014

Synthesis Of Perylenediimide-Functionalized Silsesquioxane Nanostructures, Lan Xu

Masters Theses & Specialist Projects

Organic semiconductors functionalized nanostructures are becoming as promising materials for electronic device applications including organic photovoltaics (OPVs). Perylenediimide (PDI) derivatives have also been known as one of the best n-type organic semiconductors. PDI derivatives can form bulk materials, which are both photochemically and thermally stable and have been widely used in various optoelectronic devices. Due to the formation of high electron mobility of crystalline domains, they prefer to incorporate into a silsesquioxane network. Here, we describe the potential applicability of perylenediimide functionalized silsesquioxane nanoribbons (PDI-dimethyl nanoribbons) as an acceptor for optoelectronic devices. We have developed synthetic procedures to make the …


Synthesis And Characterization Of Manganese Pyridazyl Complexes, Sana Shah Dec 2013

Synthesis And Characterization Of Manganese Pyridazyl Complexes, Sana Shah

Masters Theses & Specialist Projects

Heterocyclic’s and their fused-ring derivatives have been of interest for their use in electronic materials due to their ease of production, synthetic versatility, and low cost compared to traditional inorganic materials like silicon. Pyridazines have been found to be useful in catalysis gas storage, polymeric sensors and biological mimetics. When a transition-metal is fused into a synthesized pyridazine, unique properties such as conductivity and optics are allowed. In this work, synthesized pyridazine complexes will be analyzed by mass spectroscopy, elemental analysis, nuclear magnetic resonance, imaging, x-ray crystallography, and infrared spectroscopy. We are interested in synthesizing organometallic pyridazines and manganese pyridazyl …


Analysis Of Kyrock For Leaching Of Impurities In Synthetic Rainwater, Santhosh Kumar Kasulavada Aug 2013

Analysis Of Kyrock For Leaching Of Impurities In Synthetic Rainwater, Santhosh Kumar Kasulavada

Masters Theses & Specialist Projects

Kyrock is a coarse grained sandstone with a complex mixture of organic and inorganic compounds. Mining of Kyrock is for use in road construction and roofing. Kyrock samples were analyzed using scanning electron microscopy to obtain elemental analysis. High levels of carbon indicate the presence of organic compounds. Analysis of an acid digestion of the samples using inductively coupled plasma spectroscopy showed inorganic compounds such as titanium oxide, vanadium oxide along with traces of arsenic. Elemental analysis of samples indicates a percent of carbon, and sulfur with no notable traces of nitrogen. Pyrolysis of the samples was done using gas …


Selective Catalytic Oxidation Of Organic Sulfides By Iron (Iii) Porphryin Catalysts And Generation Of Iron (Iv)-Oxo Prophyrin Radical Cations, Nawras A. Asiri Aug 2013

Selective Catalytic Oxidation Of Organic Sulfides By Iron (Iii) Porphryin Catalysts And Generation Of Iron (Iv)-Oxo Prophyrin Radical Cations, Nawras A. Asiri

Masters Theses & Specialist Projects

Macrocyclic ligand-complexed transition metal-oxo intermediates are the active oxidizing species in a variety of important biological and catalytic oxidation reactions. Many transition metal catalysts have been designed to mimic the predominant oxidation catalysts in nature, namely the cytochrome P450 enzymes. Iron porphyrin complexes have been the center of research as catalysts. In this study 5,10,15,20- tetramesitylporphyrin (H2TMP) and its corresponding iron complexes FeIII(X)TMP (X= Cl, ClO4, ClO3, NO3, NO2, and BrO3) have been successfully synthesized and fully characterized by UV-vis and NMR spectroscopies. For the catalytic …


Synthesis, Structure, And Characterization Of Hybrid Solids Containing Polyoxometalates And Ruthenium Polypyridyl Complexes, Yanfen Ll May 2012

Synthesis, Structure, And Characterization Of Hybrid Solids Containing Polyoxometalates And Ruthenium Polypyridyl Complexes, Yanfen Ll

Masters Theses & Specialist Projects

Polyoxometalates (POMs), which are inorganic metal oxide cluster anions with discrete structures, have been extensively studied in recent years due to their large variety of applications such as medicine, biology, catalysis, material sciences and chemical analysis. Ruthenium polypyridyl complexes have been extensively studied for their applications as photosensitizers in solar energy conversion and photoelectronic materials. Recently, ruthenium heterocyclic ligand complex-based building blocks have been used for the synthesis of hybrid organic-inorganic solids through the self-assembly. We are interested in the synthesis of ruthenium polypyridyl complexes and polyoxometalate anions through different ways such as coordination bonds, hydrogen bonds and ionic bonds …