Open Access. Powered by Scholars. Published by Universities.®

Inorganic Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Inorganic Chemistry

Synthesis And Characterization Of 2,6-Diisopropylphenoxy Tetrapyrazinoporphyrazines As Potential Molecular Qubits, Benjamin Marx Dec 2022

Synthesis And Characterization Of 2,6-Diisopropylphenoxy Tetrapyrazinoporphyrazines As Potential Molecular Qubits, Benjamin Marx

Masters Theses

This thesis reports the synthesis of metal-free and metal-containing phthalocyanine derivatives using methods typical for that class of functional dyes. A mixture of the target compounds prepared here, one paramagnetic and one diamagnetic tetrapyrazinoporphyrazine, will be tested for their potential use in spintronics – the application of spin-active species in molecular electronics. Phthalocyanines and their derivatives are well-known for their ease of preparation and tunability; they have been utilized as sensitizers for photodynamic therapy of cancer and solar cells, as well as in catalysis and chemical sensing. Tetrapyrazinoporphyrazine complexes are compared with the parent phthalocyanine as their chemistry is similar …


Influence Of Tethered, Axially Coordinated Ligands On Rh(Ii,Ii)-Catalyzed Carbene Transfer Reactions, Cristian E. Zavala May 2022

Influence Of Tethered, Axially Coordinated Ligands On Rh(Ii,Ii)-Catalyzed Carbene Transfer Reactions, Cristian E. Zavala

Doctoral Dissertations

Dirhodium (II,II) paddlewheel complexes have become ubiquitous in diazo-mediated carbene transfer reactions. The Rh(II,II)-carbene intermediate is capable of a large variety of transformations such as cyclopropanation, C-H and X-H (O, N, S, Si, B) insertion reactions, cyclopropenations, and ylide transformations. Cyclopropanation reactions resulting in the formation of functionalized cyclopropane structures has always been a major focus in Rh(II,II)-carbene chemistry. Improvements on catalytic performance in cyclopropanations has largely focused on the modification of the bridging ligands and has resulted in Rh(II,II) catalysts that exhibit high reactivity and selectivity in cyclopropanation reactions. However, high enantio- and diastereoselectivity is not easily achieved with …


Exploration Of N-Heterocyclic Carbenes For The Functionalization Of Gold Surfaces And Their Metal Complexes, Shelby L. Strausser May 2021

Exploration Of N-Heterocyclic Carbenes For The Functionalization Of Gold Surfaces And Their Metal Complexes, Shelby L. Strausser

Doctoral Dissertations

Gold surface chemistry has progressed considerably towards many applications in medicine. Due to the non-toxic nature of gold in the human body, gold surfaces have been investigated for biometric sensors and targeted drug therapy agents. While gold is relatively unreactive in its elemental form, gold surfaces (such as films or nanoparticles) require a ligand for stability and improved functionality. The typical ligand is thiols for self-assembled monolayers on gold surfaces. While thiol self-assembly on surfaces is well understood, thiols are known to degrade or leach under a wide variety of conditions, including both thermal and chemical, which is toxic in …


Development And Implementation Of Redox-Active Olefin Polymerization Catalysts, William Curtis Anderson Jr. Dec 2017

Development And Implementation Of Redox-Active Olefin Polymerization Catalysts, William Curtis Anderson Jr.

Doctoral Dissertations

Investigating homogeneous polymerization catalysts has been a thriving area of chemistry in the academic realm for several decades now, and has helped drive the development of a range of materials, from designer plastics to cheap commodity polymers. Billions of pounds of these materials are produced every year, which ensures that continuing research in the area will be necessary to improve current processes and enable more economic use of our resources.

This dissertation showcases the Long group’s research in homogeneous polymerization catalysis and our impact on the field thus far. We show that intelligent design of redox-active catalysts allows for a …


Thermally Robust And Redox Active Catalysts: Studying Their Behavior For Ethylene And L-Lactide Polymerization, Lauren Ashley Brown May 2017

Thermally Robust And Redox Active Catalysts: Studying Their Behavior For Ethylene And L-Lactide Polymerization, Lauren Ashley Brown

Doctoral Dissertations

The development of homogenous single-site catalysts has significantly impacted the field of organometallic chemistry. The well-defined structures of homogenous catalysts make it less cumbersome to understand and develop methods to tailor these compounds for specific catalytic processes. Currently, polymerization catalysis is a major division in organometallic chemistry due to the global demand for polymeric materials such as polyethylene (PE) and polypropylene (PP), based on their low-cost feedstock, remarkable mechanical properties, and their use in a wide range of applications. However, bioplastics have become a highly sought-after alternative to conventional petrochemical-based plastics due to their biodegradability and derivatization from renewable resources. …


Ion Separations: Achieving Selectivity Through Rational Design In Solvent Extraction And Crystallization Systems, Neil Justin Williams May 2017

Ion Separations: Achieving Selectivity Through Rational Design In Solvent Extraction And Crystallization Systems, Neil Justin Williams

Doctoral Dissertations

The selective separation of ions from aqueous solutions has been a difficult challenge to address in the separation sciences. The difficulties associated with selective separations of ions are due to a multitude of chemical and physical differences between them. Additionally, the term ions encompass both positively charged cations and their counter parts the negatively charge anions. The work covered in this dissertation discusses the difficulties encountered during the selective separation of both oxoanions and cations. Apart from the Introduction Chapter 1 and Conclusion Chapter 10, the selective separations oxoanions and cations will be discussed separately with the dissertation being …


Synthesis And Characterization Of Novel Ligand For Use On Rhodium Paddlewheel Complexes, Gavin J. Rustin Dec 2016

Synthesis And Characterization Of Novel Ligand For Use On Rhodium Paddlewheel Complexes, Gavin J. Rustin

Masters Theses

Dirhodium (II) paddlewheel complexes have proven to be useful catalysts in many transformations including C-H insertions, cyclopropanation, and silane insertion reactions. One deficiency of these catalysts is the inability to modulate the enantioselectivity with reactive diazo compounds. One avenue for potential improvement of paddlewheel complexes is coordinating ligands in the axial site to increase enantioselectivity. The axial site has been occupied by various ligands including Nheterocyclic carbenes, nitrogen compounds, and phosphorous compounds. This work examines compounds that can be used as ligands on dirhodium complexes that have a pendant chain containing a dibenzyl phosphite and dibenzyl phosphate, both of which …


Developing Synthetic Methods To Prepare Discrete Metal-Organic Nanotubes, Derek L. Mull May 2016

Developing Synthetic Methods To Prepare Discrete Metal-Organic Nanotubes, Derek L. Mull

Masters Theses

Metal-organic nanotubes (MONTs) are an emerging class of discrete materials that are the 1D variant of metal-organic frameworks (MOFs). MONTs have potential to become an alternative 1D material to carbon nanotubes, metal oxide nanotubes, and boron nitride nanotubes because they possess an organic ligand that can be functionalized and tuned for specific applications. Despite this potential, only a handful of structures have been reported and only two examples of discrete MONTs exist in the literature. It is thus imperative to develop general methods to prepare and characterize discrete MONTs to bring them to the forefront of the scientific literature.

Efforts …


An Investigation Of Inorganic Compound Scattering., Karl Jay Bernstein May 2015

An Investigation Of Inorganic Compound Scattering., Karl Jay Bernstein

Doctoral Dissertations

Raman and its associated forms of spectroscopy are powerful tools that have been under-utilized. Presented within are three inorganic compounds studied with some form of Raman spectroscopy: normal Raman, hyper-Raman (HR), surface-enhanced Raman spectroscopy (SERS), surface-enhanced hyper-Raman spectroscopy (SEHRS), or resonance Raman spectroscopy (RR).

The first study involves the investigation of phosphine binding with silver metal. Phosphines find wide use in synthetic circles yet have had little study into their method of binding, unlike similar compounds comprised of sulfur. In order to understand the binding of phosphines, several tertiary phosphines, secondary phosphines and secondary phosphine oxides are examined with SERS. …