Open Access. Powered by Scholars. Published by Universities.®

Inorganic Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Inorganic Chemistry

Antiviral Effects Of Metalloshielding: Differential Antiviral Activity Of Polynuclear Platinum And Cobalt Compounds, Mary Zoepfl Jan 2022

Antiviral Effects Of Metalloshielding: Differential Antiviral Activity Of Polynuclear Platinum And Cobalt Compounds, Mary Zoepfl

Theses and Dissertations

The majority of antiviral drug development has focused on virus-specific discovery targeting discrete steps in the individual life cycles. Although great strides have been made for a number of clinically relevant diseases such as human immunodeficiency virus, influenza virus, and hepatitis B, broad spectrum antivirals do not exist. Broad spectrum antivirals would offer (1) treatment for viruses without specifically-targeted antivirals, (2) treatment for viruses which have developed resistance to their available treatments, and (3) a rapidly deployable treatment option in viral epidemics. Many viruses including human cytomegalovirus (HCMV), HIV, and SARS-CoV-2. rely on heparan sulfate (HS), a highly sulfated glycosaminoglycan …


Synthesis, Surface Functionalization, And Biological Testing Of Iron Oxide Nanoparticles For Development As A Cancer Therapeutic, Stanley E. Gilliland Iii Jan 2015

Synthesis, Surface Functionalization, And Biological Testing Of Iron Oxide Nanoparticles For Development As A Cancer Therapeutic, Stanley E. Gilliland Iii

Theses and Dissertations

Iron oxide nanoparticles are highly researched for their use in biomedical applications such as drug delivery, diagnosis, and therapy. The inherent biodegradable and biocompatible nanoparticle properties make them highly advantageous in nanomedicine. The magnetic properties of iron oxide nanoparticles make them promising candidates for magnetic fluid hyperthermia applications. Designing an efficient iron oxide nanoparticle for hyperthermia requires synthetic, surface functionalization, stability, and biological investigations. This research focused on the following three areas: optimizing synthesis conditions for maximum radiofrequency induced magnetic hyperthermia, designing a simple and modifiable surface functionalization method for specific or broad biological stability, and in vitro and in …


Development Of Non-Traditional Platinum Anticancer Agents: Trans-Platinum Planar Amine Compounds And Polynuclear Platinum Compounds, Daniel E. Lee Jan 2015

Development Of Non-Traditional Platinum Anticancer Agents: Trans-Platinum Planar Amine Compounds And Polynuclear Platinum Compounds, Daniel E. Lee

Theses and Dissertations

Development of Non-Traditional Platinum Anticancer Agents: trans-Platinum Planar Amine Compounds and Polynuclear Platinum Compounds

By Daniel E. Lee, Ph.D.

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at Virginia Commonwealth University.

Virginia Commonwealth University, 2015

Major Director: Nicholas P Farrell, Ph.D., Professor, Department of Chemistry

Platinum anticancer compounds with cis geometry, similar to cisplatin, have been explored to circumvent the cisplatin resistance; however, they were not considered broadly active in cisplatin cells due to exhibiting similar or same cell death mechanism as cisplatin. Platinum compounds with trans geometry were less studied …


Modified Seed Growth Of Iron Oxide Nanoparticles In Benzyl Alcohol: Magnetic Nanoparticles For Radio Frequency Hyperthermia Treatment Of Cancer, Stanley E. Gilliland Iii Jan 2014

Modified Seed Growth Of Iron Oxide Nanoparticles In Benzyl Alcohol: Magnetic Nanoparticles For Radio Frequency Hyperthermia Treatment Of Cancer, Stanley E. Gilliland Iii

Theses and Dissertations

Iron oxide nanoparticles have received sustained interest for biomedical applications as synthetic approaches are continually developed for precise control of nanoparticle properties. This thesis presents an investigation of parameters in the benzyl alcohol synthesis of iron oxide nanoparticles. A modified seed growth method was designed for obtaining optimal nanoparticle properties for magnetic fluid hyperthermia. With a one or two addition process, iron oxide nanoparticles were produced with crystallite sizes ranging from 5-20 nm using only benzyl alcohol and iron precursor. The effects of reaction environment, temperature, concentration, and modified seed growth parameters were investigated to obtain precise control over properties …