Open Access. Powered by Scholars. Published by Universities.®

Inorganic Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Materials Chemistry

PDF

2018

Institution
Keyword
Publication
Publication Type

Articles 1 - 20 of 20

Full-Text Articles in Inorganic Chemistry

Stabilized, Hybrid Solid-State Photocatalysts For Water Purification: Preparation, Properties And Performance Under Visible Light Irradiation, Karpagavalli Ramji Dec 2018

Stabilized, Hybrid Solid-State Photocatalysts For Water Purification: Preparation, Properties And Performance Under Visible Light Irradiation, Karpagavalli Ramji

Seton Hall University Dissertations and Theses (ETDs)

Stabilized heterogeneous photocatalysts that use only solar light and air have been prepared and successfully employed to decontaminate water from organic pollutants. Organic dye pollutants present, for example in textile effluents, are one of the major sources of water pollution owing to their limited biodegradability, toxicity and potential carcinogenic risks. Before certifying water for public consumption, reuse in industries or for discharge in surface water the organic pollutants must be degraded, an effort that is energy intensive and currently requires complex methodologies. We report solid-state photocatalysts that use only visible light and air to treat wastewater. Perfluoroalkyl perfluoro-substituted zinc phthalocyanine …


Pressure Tuning Of Energy Storage Materials Probed By In-Situ Vibrational Spectroscopy And Synchrotron Radiation, Pan Wang Oct 2018

Pressure Tuning Of Energy Storage Materials Probed By In-Situ Vibrational Spectroscopy And Synchrotron Radiation, Pan Wang

Electronic Thesis and Dissertation Repository

Clean and renewable energy has drawn much attention recently due to the increasing demand for more energy and environmental issues. New materials have been developed and the improved performance of such materials have been achieved in the past decades. It has been proved that application of external high pressure can significantly tune the structure of materials. Consequently, the properties of the materials could also be modified. Therefore, in this thesis, we focused on the high-pressure studies of two classes of energy storage materials, hydrogen storage materials and solar cell materials. Ammonia borane (AB) has been extensively investigated as an excellent …


Platinum@Hexaniobate Nanopeapods: Sensitized Composite Architectures For Photocatalytic Hydrogen Evolution Under Visible Light Irradiation, Clare Davis-Wheeler Chin Aug 2018

Platinum@Hexaniobate Nanopeapods: Sensitized Composite Architectures For Photocatalytic Hydrogen Evolution Under Visible Light Irradiation, Clare Davis-Wheeler Chin

University of New Orleans Theses and Dissertations

Hydrogen fuel is one of the most important areas of research in the field of renewable energy development and production. Hydrogen gas can be generated by fuel cells, water electrolyzers, and heterogeneous nanoscale catalysts. It can be burned to directly release chemical energy or condensed for storage and transport, providing fuel for combustion devices or storing excess energy generated by renewable sources such as wind turbines and concentrated solar power assemblies. While platinum is the most active catalyst for hydrogen reduction, its high cost significantly deters its utilization in advanced photocatalytic materials. One approach to mitigating this expense is optimizing …


Examining The Effects Of Amino And Thiolate Ligands On The Reactivity And Selectivity Of Palladium On Carbon In Hydrogenation Reactions, Eric Liu, Christina Li Aug 2018

Examining The Effects Of Amino And Thiolate Ligands On The Reactivity And Selectivity Of Palladium On Carbon In Hydrogenation Reactions, Eric Liu, Christina Li

The Summer Undergraduate Research Fellowship (SURF) Symposium

Heterogeneous catalysts are used widely by chemical and energy industries because they show high reactivity but often suffer from lack of selectivity. On the other hand, ligands are commonly used in homogeneous catalysts to control the reactivity and selectivity; however, the effects of the ligands on the steric and electronic properties of heterogeneous catalysts are less understood. We examine the effects of four different ligands: 1-adamantanethiol, 1-adamantylamine, 1-dodecanethiol, and 1-dodecylamine, for the commercial hydrogenation catalyst palladium on carbon. Hydrogenation reactions are used as a screening tool to see the behavior that the different catalysts exhibit in the presence of unsaturated …


Computational And Spectroscopic Studies In The Design Of Tetrapyrrole Dyes For Dye-Sensitized Solar Cells, Angel (Qi Wen) Zhang Jul 2018

Computational And Spectroscopic Studies In The Design Of Tetrapyrrole Dyes For Dye-Sensitized Solar Cells, Angel (Qi Wen) Zhang

Electronic Thesis and Dissertation Repository

Cyclic tetrapyrroles, like porphyrins, phthalocyanines, and chlorins, are of great interest for dye-sensitized solar cell (DSSC) applications due to their highly versatile structure, tunable π based spectroscopic and electrochemical properties, and excellent stabilities. As well, they have a structural analogy with chlorophyll, a natural photosensitizer. Chlorophylls exhibit a red and intense lowest energy absorption band that is one of the ideal properties of a dye for application in DSSCs. However, because chlorophylls are unstable, it is necessary to design similar but more stable tetrapyrroles with these ideal properties. The relationship between chlorophyll’s geometric structure and spectral properties were first explored …


An Entirely New Molecular Glue For Mof Using Unusual Structural Transformation Of A Coordination Polymer, Sukwoo Jung, Hangyeol Kim, Junseok Ahn Jun 2018

An Entirely New Molecular Glue For Mof Using Unusual Structural Transformation Of A Coordination Polymer, Sukwoo Jung, Hangyeol Kim, Junseok Ahn

The International Student Science Fair 2018

In this research, an entirely new molecular glue is reported. This ‘coordination polymer glue’ is synthesized from zinc metal and BDC-NPE(2,5-bis{4-[1-(4-nitrophenyl)ethylamino]butoxy}terephthalic acid). Molecular glue transforms from 1D coordination polymer to a 3D cross-linked framework, resulting in a phase change of solution to solid. The carboxylate group of this glue makes the preformed MOF bind to its framework. Therefore, when the solution of molecular glue is mixed with preformed MOF powder and heated, homogeneous and thin MOF film – MOF/ZnNPE film – is fabricated. The film is irrelevant to the kind of its substrate, and its thermal stability was enhanced in …


An Entirely New Molecular Glue For Mof Using Unusual Structural Transformation Of A Coordination Polymer, Sukwoo Jung, Hangyeol Kim, Junseok Ahn Jun 2018

An Entirely New Molecular Glue For Mof Using Unusual Structural Transformation Of A Coordination Polymer, Sukwoo Jung, Hangyeol Kim, Junseok Ahn

The International Student Science Fair 2018

In this research, an entirely new molecular glue is reported. This ‘coordination polymer glue’ is synthesized from zinc metal and BDC-NPE(2,5-bis{4-[1-(4-nitrophenyl)ethylamino]butoxy}terephthalic acid). Molecular glue transforms from 1D coordination polymer to a 3D cross-linked framework, resulting in a phase change of solution to solid. The carboxylate group of this glue makes the preformed MOF bind to its framework. Therefore, when the solution of molecular glue is mixed with preformed MOF powder and heated, homogeneous and thin MOF film – MOF/ZnNPE film – is fabricated. The film is irrelevant to the kind of its substrate, and its thermal stability was enhanced in …


Tumor-Targeting Fluorinated Phthalocyanines For Theranostic Applications, Erik Nathaniel Carrión May 2018

Tumor-Targeting Fluorinated Phthalocyanines For Theranostic Applications, Erik Nathaniel Carrión

Seton Hall University Dissertations and Theses (ETDs)

Hydrocarbon-based therapeutics and imaging agents are prone to chemical oxidation and degradation resulting in loss of activity and limited functional utility. Thus, more material is required to achieve long-lasting therapeutic effects. Phthalocyanines (Pcs) and their metal complexes (PcMs) can be utilized as prodrugs requiring only renewable energy resources namely, air and light, for cancer therapy and diagnostic (theranostic) applications related to photodynamic therapy (PDT). Replacement of labile C-H bonds in the Pc scaffold with a combination of fluoro and perfluoroisopropyl groups has resulted in a stable yet reactive oxidation catalyst of biological significance and importance. For example, F64PcZn, …


Photoelectrochemical Studies On Non-Noble Metal Based Catalysts Towards Tandem Solar Water Splitting, Arun Siddarth Sridhar May 2018

Photoelectrochemical Studies On Non-Noble Metal Based Catalysts Towards Tandem Solar Water Splitting, Arun Siddarth Sridhar

Dissertations

Photoelectrochemical (PEC) water splitting makes direct use of solar energy incident on semiconductor photoelectrodes, and it is a convenient, economic option to produce high purity hydrogen at low temperatures. The use of multiple light absorbers can increase overall solar energy utilization and provide a solution to the trade-off between overall band gap and band edge positioning of photoelectrodes specific to solar water oxidation and water reduction. The study of non-noble metal based catalysts for hydrogen evolution reaction (HER) and oxygen evolution reactions (OER) are essential for economic practical commercialization of photo-electrolyzers. This dissertation focuses on the use of a variety …


Synthesis Of A Silsesquioxane Based Supramolecular Polymer, Rachel Bianculli Apr 2018

Synthesis Of A Silsesquioxane Based Supramolecular Polymer, Rachel Bianculli

Honors Projects

Research toward smart materials, specifically self-healing polymers, is an expanding topic within the materials science field. These materials rely heavily on dynamic crosslinking that is achieved by inducing different degrees of hydrogen bonding, van der Waals forces, etc. This work, demonstrated by research previously done within the Ostrowski research group, shows how coordination bonds of transition metals have been shown to create light activated, self-healing properties. Work done with these light-activated chromium (III) complexes with a poly(butylyene-co-ethylene) backbone have shown how metal—ligand coordination geometries can tune mechanical properties of the polymeric material. However, these materials suffer from being incredibly soft …


Development Of Rules Of Attraction For Intercalated Guest Molecules Inside Of A Hydrogen Bonded Framework, Matthew Fischer Apr 2018

Development Of Rules Of Attraction For Intercalated Guest Molecules Inside Of A Hydrogen Bonded Framework, Matthew Fischer

Dissertations

Supramolecular chemistry has synthesized large and small molecules which host guest molecules for several decades. What started as a way to mimic of enzymes in nature, has exploded into a sea of materials such as porous coordination polymers, low-density metal-organic frameworks, inclusion compounds, and hydrogen bonded frameworks. We previously designed a layered framework consisting of a metal complex with coordinate covalent ligands. These ligands have peripheral carboxylic acid groups which hydrogen bond to organic pillars containing terminal amines. The layered structure is separated by these pillars, which are closed-packed, creating 1-dimensional channels able to co-crystallize molecules. There is interest in …


Steric Effects On The Formation Of Manganese Oxide Clusters And 2-Dimensional Ammonium Formate Architectures, Carl Oberle Apr 2018

Steric Effects On The Formation Of Manganese Oxide Clusters And 2-Dimensional Ammonium Formate Architectures, Carl Oberle

Dissertations

It has been demonstrated by the Beatty group that altering the identity of the ortho-substituent of a dianiline counterion affects the assembly and dimensionality of a cadmium-chloride layer from 2-D to 0-D. This work seeks to extend this finding to metal oxide and organic hydrogen-bonded materials. By systematically increasing the ortho­-substituent’s size on the benzoate building block of reported manganese oxide clusters, of formula MnxOy(O2C-R)zLw (where R = Alkyl, L = neutral monodentate ligand), we aim to impact the self-assembly of these materials relative to their parent …


From Flasks To Applications: Design And Optimization Of Giant Quantum Dots Using Traditional And Automated Synthetic Methods, Christina J. Hanson Apr 2018

From Flasks To Applications: Design And Optimization Of Giant Quantum Dots Using Traditional And Automated Synthetic Methods, Christina J. Hanson

Nanoscience and Microsystems ETDs

Semiconducting nanocrystals, also known as quantum dots (QDs), that emit light with near-unity quantum yield and are extremely photostable are attractive options as down-conversion and direct electricity-to-light materials for a variety of applications including solid-state lighting, display technologies, bio-imaging and optical tracking. Standard QDs with a core/thin shell structure display fluorescence intermittency (blinking) and photobleaching when exposed to prolonged room temperature excitation for single dot measurements, as well as significant reabsorption and energy transfer when densely packed into polymers or at high solution concentrations.

We have developed thick shell “giant” QDs (gQDs), ultra-stable photon sources both at the ensemble and …


Imidazolium Ionic Liquids As Multifunctional Solvents, Ligands, And Reducing Agents For Noble Metal Deposition Onto Well-Defined Heterostructures And The Effect Of Synthetic History On Catalytic Performance, Michael Drake Ballentine Apr 2018

Imidazolium Ionic Liquids As Multifunctional Solvents, Ligands, And Reducing Agents For Noble Metal Deposition Onto Well-Defined Heterostructures And The Effect Of Synthetic History On Catalytic Performance, Michael Drake Ballentine

Masters Theses & Specialist Projects

1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([BMIM]Tf2N) was investigated as a multifunctional solvent, ligand, and reducing agent for platinum deposition onto well-defined CdSe@CdS nanorods. Platinum deposition was carried out thermally and photochemically using Pt(acac)2 as the metal precursor. Thermal deposition was investigated in [BMIM]Tf2N with and without addition of a sacrificial reducing agent, and product topology was compared with the products obtained from polyol reduction using 1,2-hexadecanediol, oleic acid, and oleylamine in diphenyl ether. Photochemically induced platinum deposition was carried out at room temperature in [BMIM]Tf2N, and product topology was compared with the photodeposition products obtained from a toluene dispersion. Thermal deposition of platinum …


Systematic Size Control In The Synthesis Of Zero-Valent Iron Nanoparticles, Grant C. Bleier Feb 2018

Systematic Size Control In The Synthesis Of Zero-Valent Iron Nanoparticles, Grant C. Bleier

Chemistry and Chemical Biology ETDs

A novel synthetic method for the production of highly magnetic, low size-dispersity nanoparticles through reversible magnetic agglomeration is introduced and studied in detail. Initially, a weakly coordinating surfactant (3-octadecyl-2,4-pentanedione) is employed to produce a wide range of nanoparticle sizes ranging from 8 to 20 nm in diameter. The kinetics faced in these reactions by cheap and widely available iron complex precursors can be avoided in this method with the introduction of thermodynamic control, which occurs in the form of a magnetic precipitation event that essentially halts nanoparticle growth. Utilizing this synthetic method, the length of the alkyl chain on the …


Colloidal Synthesis And Photophysical Characterization Of Group Iv Alloy And Group Iv-V Semiconductors: Ge1-Xsnx And Sn-P Quantum Dots, Venkatesham Tallapally Jan 2018

Colloidal Synthesis And Photophysical Characterization Of Group Iv Alloy And Group Iv-V Semiconductors: Ge1-Xsnx And Sn-P Quantum Dots, Venkatesham Tallapally

Theses and Dissertations

Nanomaterials, typically less than 100 nm size in any direction have gained noteworthy interest from scientific community owing to their significantly different and often improved physical properties compared to their bulk counterparts. Semiconductor nanoparticles (NPs) are of great interest to study their tunable optical properties, primarily as a function of size and shape. Accordingly, there has been a lot of attention paid to synthesize discrete semiconducting nanoparticles, of where Group III-V and II-VI materials have been studied extensively. In contrast, Group IV and Group IV-V based nanocrystals as earth abundant and less-non-toxic semiconductors have not been studied thoroughly. From the …


Development Of Photocatalysts Supported On Graphitic Carbon Nitride For The Degradation Of Organic Water Pollutants, Atanu Giri Jan 2018

Development Of Photocatalysts Supported On Graphitic Carbon Nitride For The Degradation Of Organic Water Pollutants, Atanu Giri

Theses and Dissertations

Graphitic carbon nitride (g-C3N4) heterojunction composites with the semiconducting metal oxides, CeO2, ZnO and TiO2 are prepared in situ by co-calcination of the precursor materials or by a solvothermal method. The structural, morphological and the optical properties of the prepared materials are studied using various microscopy and spectroscopy techniques. The synthesized composite materials, CeO2/g-C3N4, ZnO/g-C3N4 and TiO2/g-C3N4 are more efficient in the photocatalytic degradation of the water pollutants indigo carmine (IC) and atrazine than the pure metal oxide, g-C …


Synthesis And Characterization Of Magnetic Cabides And Oxides Nanomaterials, Hei Man Tsui Jan 2018

Synthesis And Characterization Of Magnetic Cabides And Oxides Nanomaterials, Hei Man Tsui

Theses and Dissertations

The design and development of nanoparticles is of great interest in the current energy and electronic industry. However, based on the current materials available the production cost can be high with insignificant magnetic and mechanical properties. Specifically, rare-earth magnetic materials composed of neodymium and samarium are known for their high magnetic performance, however, due to the cost of development there is a need to develop a versatile and cost effective material. Alternatively, cobalt carbide nanomaterials have shown to be a promising alternative for rare-earth free magnets as they exhibit comparable properties as hexaferrite magnetic materials. The primary goal of this …


Heteroatom Doped Porous Carbon For Alternative Energy Conversion And Storage Systems, Fatema A. Choudhury Jan 2018

Heteroatom Doped Porous Carbon For Alternative Energy Conversion And Storage Systems, Fatema A. Choudhury

Theses and Dissertations

Abstract

The electrocatalysis of oxygen plays a significant role in several electrochemical energy storage and conversion systems including metal−air batteries, fuel cells, electrocatalytic and photocatalytic water splitting. The sluggish kinetics and complex reaction mechanism of this cathodic oxygen reduction reaction (ORR) affect the performance and practical application of such renewable energy technologies. To address this limiting factor, a suitable electrocatalyst is required for ORR. In general, platinum or highly dispersed Pt-based nanoparticles on carbon black are considered as the best ORR catalyst. But platinum being very scarce and expensive tends to increase the cost. Moreover, platinum-based catalysts are prone to …


Hyperpolarized Porous Silicon Nanoparticles: Potential Theragnostic Material For 29si Magnetic Resonance Imaging, Hyeonglim Seo, Ikjang Choi, Nicholas Whiting, Jingzhe Hu, Quy S. Luu, Shivanand Pudakalakatti, Caitlin Mccowan, Yaewon Kim, Niki Zacharias Millward, Seunghyun Lee, Pratip Bhattacharya, Youngbok Lee Dec 2017

Hyperpolarized Porous Silicon Nanoparticles: Potential Theragnostic Material For 29si Magnetic Resonance Imaging, Hyeonglim Seo, Ikjang Choi, Nicholas Whiting, Jingzhe Hu, Quy S. Luu, Shivanand Pudakalakatti, Caitlin Mccowan, Yaewon Kim, Niki Zacharias Millward, Seunghyun Lee, Pratip Bhattacharya, Youngbok Lee

Nicholas Whiting

Porous silicon nanoparticles have recently garnered attention as potentially-promising biomedical platforms for drug delivery and medical diagnostics. Here, we demonstrate porous silicon nanoparticles as contrast agents for 29Si magnetic resonance imaging. Size-controlled porous silicon nanoparticles were synthesized by magnesiothermic reduction of silica nanoparticles and were surface activated for further functionalization. Particles were hyperpolarized via dynamic nuclear polarization to enhance their 29Si MR signals; the particles demonstrated long 29Si spin-lattice relaxation (T1) times (~25 mins), which suggests potential applicability for medical imaging. Furthermore, 29Si hyperpolarization levels were sufficient to allow 29Si MRI in phantoms. These results underscore the potential of porous …