Open Access. Powered by Scholars. Published by Universities.®

Inorganic Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Inorganic Chemistry

Formation Of Doped Semiconductor Nanocrystals From Doped Molecular Clusters, Jillian E. Denhardt Oct 2022

Formation Of Doped Semiconductor Nanocrystals From Doped Molecular Clusters, Jillian E. Denhardt

Doctoral Dissertations

Transition metal doping of semiconductor nanomaterials, particularly magnetic dopant ions, is of great interest for the synthesis of diluted magnetic semiconductors (DMS) with spintronic-based applications. The incorporation of magnetic ions into quantum dots (QDs) would be particularly useful since the quantum confinement of these materials is theorized to enhance magneto-optical related properties. One major challenge in this field is the segregation of dopant ions towards the outer regions of the QD due to the exclusion of dopants during the nucleation process, thereby inhibiting the magneto-optical properties. In this dissertation, we address the dopant segregation challenge by exploring the underlying mechanisms …


Tailoring Interfaces And Composition For Stable And Efficient Perovskite Solar Cells, Hamza Javaid Feb 2022

Tailoring Interfaces And Composition For Stable And Efficient Perovskite Solar Cells, Hamza Javaid

Doctoral Dissertations

Metal halide perovskite solar cells (PSCs) have revolutionized the field of thin film photovoltaics. Within a decade, the power conversion efficiencies (PCEs) have increased at a phenomenal rate, rising from 3.8% to more than 25% in single-junction devices, moving them ahead of the current silicon-based technology. The high efficiencies of perovskite solar cells (PSCs) and their other unique properties arise from a combination of organic and inorganic components and electronic-ionic conduction, making them excellent candidates for a plethora of applications. However, PSCs face a significant—and ironic—roadblock to commercialization: these light-harvesting materials degrade under sunlight—the very condition they would need …


Manipulating The Aliovalent Magnetic Dopants In Ti(Iv)-Based Oxide Nanocrystals, Muhammad Abdullah Sep 2021

Manipulating The Aliovalent Magnetic Dopants In Ti(Iv)-Based Oxide Nanocrystals, Muhammad Abdullah

Doctoral Dissertations

The intentional incorporation of impurities or dopants in semiconductors is fundamental to manipulate the properties that render them useful for spintronics, photocatalysis, and optoelectronics. One long-standing challenge in integrating the doped semiconductors in various applications is the design of materials with controlled individual dopant properties such as dopants speciation, valence state, and spin dynamics. Despite several elegant studies to circumvent these material challenges, the quest for new materials with tunable dopant properties to address the theoretical and experimental understanding continues. In this work, we combine synthetic chemistry and various spectroscopies to study a class of materials possessing both substitutional magnetic …


Synthesis Of Magnetic Ion Doped Ii-Vi Benzenechalcogenolate Molecular Clusters, Fumitoshi Kato Jul 2019

Synthesis Of Magnetic Ion Doped Ii-Vi Benzenechalcogenolate Molecular Clusters, Fumitoshi Kato

Doctoral Dissertations

Diluted magnetic semiconductor quantum dots (DMS-QDs) is a class of material prepared by introducing a small percentage of magnetic impurities to impart new magneto-optical properties to the host nanocrystal (NC). Such materials are regarded as promising candidates for their potential application in spintronic devices. The overall functionality of the DMS‑QD is highly dependent on the dopant position within the host structure. A thorough understanding of the doping mechanism is, therefore, critical to gain better control over the dopant speciation in nanocrystal lattice and material properties. In this work, we utilized II‑VI molecular clusters that are analogous to bulk semiconductors as …


Modulating Dopant-Defect Interactions In Transition Metal Doped Colloidal Strontium Titanate Nanocrystals, William Harrigan Jul 2019

Modulating Dopant-Defect Interactions In Transition Metal Doped Colloidal Strontium Titanate Nanocrystals, William Harrigan

Doctoral Dissertations

Perovskites such as strontium titanate, a wide band gap semiconductor have been widely studied due to the multitude of potential applications in photocatalysis, multiferroics, sensing, and microelectronics. Various novel optical, electrical and magnetic properties can be imparted through the introduction of different transition metal dopant ions. The introduction of these impurities has been shown to impart functionality for various applications. The use of Cr3+has been shown to introduce defect levels into the band structure of SrTiO3and increase visible light utilization for photocatalysis. Transition metal doped highly crystalline colloidal SrTiO3nanocrystals (NC) were synthesized using two …


Synthesis And Molecular Transport Studies In Zeolites And Nanoporous Membranes, Vivek Vattipalli Mar 2019

Synthesis And Molecular Transport Studies In Zeolites And Nanoporous Membranes, Vivek Vattipalli

Doctoral Dissertations

The advent of nanoporous materials such as zeolites and nanoporous membranes has provided cost-effective solutions to some of the most pressing problems of the 20th century such as the conversion of crude oil into fuels and valuable chemicals. Hierarchical zeolites and mesoporous inorganic membranes are showing great promise in addressing new problems such as the conversion of biomass into value-added chemicals and development of energy-efficient separation processes. The synthesis and fundamental aspects of molecular transport in these new materials with hierarchical porosities need to be better understood in order to rationally develop them for these desired applications. Pore narrowing …


Aliovalent Dopants In Zno Nanocrystals: Synthesis To Electronic Structure, Dongming Zhou Nov 2017

Aliovalent Dopants In Zno Nanocrystals: Synthesis To Electronic Structure, Dongming Zhou

Doctoral Dissertations

Semiconductor nanocrystal doping has stimulated broad interest for many applications including solar energy conversion, nanospintronics, and phosphors or optical labels. The study of the chemistry and physics of doped colloidal semiconductor nanocrystals has been dominated in the literature by isovalent dopants such as Mn2+ and Co2+ ions in II-VI semiconductors, in which the dopant oxidation state is the same as the cation ions. Until recently, aliovalent dopants has received much attention due to the plasmonic properties. Aliovalent is when the oxidation states of the dopant in the lattice differs from the cation ions. In the plasmonic semiconductor nanocrystals, …


Dopant-Defect Engineering In Strontium Titanate-Based Materials, Keith Lehuta Mar 2017

Dopant-Defect Engineering In Strontium Titanate-Based Materials, Keith Lehuta

Doctoral Dissertations

Strontium titanate is a wide gap oxide perovskite that has been studied for numerous applications. Its potential use as a photocatalyst is limited due to only being able to utilize UV light. The introduction of metal dopant ions has been shown to alter the band structure to allow visible light photocatalysis, as well as alter the materials properties for other applications. This work will look to better explain the process of transition metal dopant ion incorporation and how the dopant ion can affect the defect chemistry of the material. The use of dopant specific spectroscopies, such as electron paramagnetic resonance …


Magnetic Doping Of Semiconductor Molecular Models And Colloidal Nanocrystals, Swamy Pittala Jul 2016

Magnetic Doping Of Semiconductor Molecular Models And Colloidal Nanocrystals, Swamy Pittala

Doctoral Dissertations

Spin-based electronics use the spins of electrons in addition to their charges and have potential applications to create a next generation of quantum computers, capable of storing vast amounts of data in an energy-efficient way. Diluted magnetic semiconductor quantum dots (DMS-QDs) have shown great promise as ideal materials for application in spin-based electronics. However, doping impurities into quantum confined colloidal nanocrystals (NCs) has been a great challenge due to the lack of control over the dopant reactivity during the specific stages of nucleation and growth. The mechanism of dopant incorporation into nanocrystals is complex and well-defined and atomically precise molecular …


Responsive Supramolecular Assemblies Based On Amphiphilic Polymers And Hybrid Materials, Longyu Li Nov 2015

Responsive Supramolecular Assemblies Based On Amphiphilic Polymers And Hybrid Materials, Longyu Li

Doctoral Dissertations

The design and synthesis of responsive supramolecular assemblies are of great interest due to their applications in a variety of areas such as drug delivery and sensing. We have developed a facile method to prepare self-crosslinking disulfide-based nanogels derived from an amphiphilic random copolymer containing a hydrophilic oligo-(ethylene glycol)-based side-chain functionality and a hydrophobic pyridyl disulfide functional group. This thesis first provides a concept of studying the influence of Hofmeister ions on the size and guest encapsulation stability of a polymeric nanogel. The size and core density of nanogel can be fine-tuned through the addition of both chaotropes and kosmotropes …