Open Access. Powered by Scholars. Published by Universities.®

Computational Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

2021

Discipline
Institution
Keyword
Publication
Publication Type

Articles 1 - 13 of 13

Full-Text Articles in Computational Chemistry

Cyclic Voltammetric Simulations On Batteries With Porous Electrodes, Xue-Fan Cai, Sheng Sun Dec 2021

Cyclic Voltammetric Simulations On Batteries With Porous Electrodes, Xue-Fan Cai, Sheng Sun

Journal of Electrochemistry

Lithium-ion batteries (LIBs) are among the most widely used energy storage devices. Whole-cell modeling and simulations of LIBs can optimize the design of batteries with lower costs and higher speeds. The Pseudo-Two-Dimensional (P2D) electrochemical model is among the most famous whole-cell models and widely applied in LIB simulations. P2D model consists of a series of kinetic equations to model Li+/Li diffusion in working/counter electrodes and electrolytes, which are filled in the porous electrodes and separator, and reactions at the interface of electrolyte and active particles. The traditional applications of P2D model, however, are limited to the cases where the current …


Adsorption Of Helium On A Charged Propeller Molecule: Hexaphenylbenzene, Siegfried Kollotzek, Florent Calvo, Serge Krasnokutski, Fabio Zappa, Paul Scheier, Olof E. Echt Nov 2021

Adsorption Of Helium On A Charged Propeller Molecule: Hexaphenylbenzene, Siegfried Kollotzek, Florent Calvo, Serge Krasnokutski, Fabio Zappa, Paul Scheier, Olof E. Echt

Faculty Publications

Physisorption on planar or curved graphitic surfaces or aromatic rings has been investigated by various research groups, but in these studies the substrate was usually strictly rigid. Here we report a combined experimental and theoretical study of helium adsorption on cationic hexaphenylbenzene (HPB), a propeller-shaped molecule. The orientation of its propeller blades is known to be sensitive to the environment, with substantial differences between the molecule in the gas phase and in the crystalline solid. Mass spectra of HenHPB+, synthesized in helium nanodroplets, indicate enhanced stability for ions containing n = 2, 4, 14, 28, 42, …


Dft Study Of NiM@Pt1AuN-M-1 (N=19, 38, 55, 79; M = 1, 6, 13, 19) Core-Shell Orr Catalyst, Wen-Jie Li, Dong-Xu Tian, Hong Du, Xi-Qiang Yan Aug 2021

Dft Study Of NiM@Pt1AuN-M-1 (N=19, 38, 55, 79; M = 1, 6, 13, 19) Core-Shell Orr Catalyst, Wen-Jie Li, Dong-Xu Tian, Hong Du, Xi-Qiang Yan

Journal of Electrochemistry

The slow kinetics of oxygen reduction reaction (ORR) limits the performance of low temperature fuel cells. Thus, it needs to design effective catalysts with low cost. Core-shell clusters (CSNCs) show promising activity because of their size-dependent geometric and electronic effects. The ORR activity trend of Nim@Pt1Aun-m-1(n = 19, 38, 55, 79; m = 1, 6, 13, 19) was studied using the GGA-PBE-PAW methods. The adsorption configurations of *O, *OH and *OOH were optimized and the reaction free energies of four proton electron (H+ + e-) transfer steps were calculated. Using …


Computational Methodologies For The Simulation And Analysis Of Low-Frequency Vibrations In Molecular Crystals, Sara Jean Dampf Aug 2021

Computational Methodologies For The Simulation And Analysis Of Low-Frequency Vibrations In Molecular Crystals, Sara Jean Dampf

Dissertations - ALL

Quantum mechanical models are used to calculate a host of physical phenomena in molecular solids ranging from mechanical elasticity to the energetic stability ordering of polymorphs. However, with the many software packages and methodologies available, it can be difficult to select the most suitable model for the problem at hand without prior knowledge. A promising approach for evaluating the performance of solid-state models is the comparison of the simulations to experimentally measured low-frequency (sub-200 cm-1) vibrational spectra. As this region is dominated by weak intermolecular forces and shallow potential energy surfaces, even slight miscalculations in the solid-state packing arrangements can …


Molecular Simulation Of Rna Conformational Dynamics : An Example Of Micro-Rna Targeting Messenger Rna : Mir-34a-Msirt1, Parisa Ebrahimi Aug 2021

Molecular Simulation Of Rna Conformational Dynamics : An Example Of Micro-Rna Targeting Messenger Rna : Mir-34a-Msirt1, Parisa Ebrahimi

Legacy Theses & Dissertations (2009 - 2024)

MicroRNA (miRNA), as a distinct class of biological regulators and a ”guide” member of non-coding RNA-protein complexes (RNPs), regulates more than 60% of protein-coding genes expression through base-pairing with targeted messenger RNA (mRNA) in the RNA-Induced Silencing Complex (RISC). Most of miRNAs identified in human, are conserved in other animals, which have preferentially conserved interaction sites particularly in 3’ untranslated regions (3’UTRs) of many human messenger mRNAs.The capability of a single miRNA to target more than hundreds of mRNAs, suggests that miRNAs influence essentially all developmental process and diseases, which also makes them interesting candidates as therapeutics agents. The primary …


Computational Enzymology On Sulfur-Containing Enzymes: From Method To Application, Paul Meister Jul 2021

Computational Enzymology On Sulfur-Containing Enzymes: From Method To Application, Paul Meister

Electronic Theses and Dissertations

Sulfur-containing biomolecules display incredible functional diversity. Indeed, in addition to thiols and thioethers, S-nitrosothiols, 3,4-coordinate, sulfoxides, persulfides and now even polysulfides are commonly observed intermediates. Unfortunately, however, their biological synthesis and roles remain poorly understood. In addition, sulfur-containing species can access a broad range of oxidation states and thus can act as either an electrophile or nucleophile giving rise to an even more diverse set of sulfur-derived functional groups. However, these unique properties can lead to difficulties in characterizing such compounds experimentally and reinforces the need for computational studies to reliably predict their structural and energetic properties. In this dissertation, …


Structural, Dynamic, Elastic And Electronic Properties Of Anin (A = Li, Na, Mg, Ca): First-Principles Calculations, Xia-Min Huang, Li-Hong Zhang, Shun-Qing Wu, Yong Yang, Zi-Zhong Zhu Jun 2021

Structural, Dynamic, Elastic And Electronic Properties Of Anin (A = Li, Na, Mg, Ca): First-Principles Calculations, Xia-Min Huang, Li-Hong Zhang, Shun-Qing Wu, Yong Yang, Zi-Zhong Zhu

Journal of Electrochemistry

Ternary transition metal nitrides ANiN (A = Li, Na, Mg, Ca) are potential electrode materials for rechargeable batteries. The physical properties, such as the thermodynamic stability, the electronic band gap as well as the elastic stability, are important for their battery applications. Here, comparative studies are performed for the structural, dynamic, elastic and electronic properties of ANiN by the first-principles method. The calculations on the cohesive energy versus unit-cell volume and phonon spectra are employed to determine the most stable structures of ANiN. The calculated elastic constants of the most stable structures indicate that the Born-Huang criterion for the elastic …


Complexes With Atomic Gold Ions: Efficient Bisligand Formation, Felix Duensing, Elisabeth Gruber, Paul Martini, Marcelo Goulart, Michael Gatchell, Bilal Rasul, Olof E. Echt, Fabio Zappa, Masoomeh Mahmoodi-Darian, Paul Scheier Jun 2021

Complexes With Atomic Gold Ions: Efficient Bisligand Formation, Felix Duensing, Elisabeth Gruber, Paul Martini, Marcelo Goulart, Michael Gatchell, Bilal Rasul, Olof E. Echt, Fabio Zappa, Masoomeh Mahmoodi-Darian, Paul Scheier

Faculty Publications

Complexes of atomic gold with a variety of ligands have been formed by passing helium nanodroplets (HNDs) through two pickup cells containing gold vapor and the vapor of another dopant, namely a rare gas, diatomic molecule (H2, N2, O2, I2, P2), or various polyatomic molecules (H2O, CO2, SF6, C6H6, adamantane, imidazole, di-cyclopentadiene, and fullerene). The doped HNDs were irradiated by electrons; ensuing cations were identified in a high-resolution mass spectrometer. Anions were detected for benzene, di-cyclopentadiene, and fullerene. For most …


Computational Algorithms For Predicting Membrane Protein Assembly From Angstrom To Micron Scale, Nandhini Rajagopal May 2021

Computational Algorithms For Predicting Membrane Protein Assembly From Angstrom To Micron Scale, Nandhini Rajagopal

Dissertations - ALL

Biological barriers in the human body are one of the most crucial interfaces perfected through evolution for diverse and unique functions. Of the wide range of barriers, the paracellular protein interfaces of epithelial and endothelial cells called tight junctions with high molecular specificities are vital for homeostasis and to maintain proper health. While the breakdown of these barriers is associated with serious pathological consequences, their intact presence also poses a challenge to effective delivery of therapeutic drugs. Complimenting a rigorous combination of in vitro and in vivo approaches to establishing the fundamental biological construct, in addition to elucidating pathological implications …


Sf6+: Stabilizing Transient Ions In Helium Nanodroplets, Simon Albertini, Stefan Bergmeister, Felix Laimer, Paul Martini, Elisabeth Gruber, Fabio Zappa, Milan Ončák, Paul Scheier, Olof E. Echt Apr 2021

Sf6+: Stabilizing Transient Ions In Helium Nanodroplets, Simon Albertini, Stefan Bergmeister, Felix Laimer, Paul Martini, Elisabeth Gruber, Fabio Zappa, Milan Ončák, Paul Scheier, Olof E. Echt

Faculty Publications

There are myriads of ions that are deemed too short-lived to be experimentally accessible. One of them is SF6+. It has never been observed, although not for lack of trying. We demonstrate that long-lived SF6+ can be formed by doping charged helium nanodroplets (HNDs) with sulfur hexafluoride; excess helium is then gently stripped from the doped HNDs by collisions with helium gas. The ion is identified by high-resolution mass spectrometry (resolution m/Dm = 15000), the close agreement between the expected and observed yield of ions that contain minor sulfur isotopes, and collision-induced dissociation …


Electronic Transitions In Rb2+ Dimers Solvated In Helium, Simon Albertini, Paul Martini, Arne Schiller, Harald Schöbel, Elham Ghavidel, Milan Ončák, Olof E. Echt, Paul Scheier Mar 2021

Electronic Transitions In Rb2+ Dimers Solvated In Helium, Simon Albertini, Paul Martini, Arne Schiller, Harald Schöbel, Elham Ghavidel, Milan Ončák, Olof E. Echt, Paul Scheier

Faculty Publications

We have measured depletion spectra of the heteronuclear (85Rb87Rb+) dimer cation complexed with up to 10 He atoms. Two absorption bands are observed between 920 and 250 nm. The transition into the repulsive 12Sigmau+ state of HeRb2+ gives rise to a broad feature at 790 nm (12650 cm–1); it exhibits a blueshift of 98 cm–1 per added He atom. The transition into the bound 1 2Piu state of HeRb2+ reveals vibrational structure with a band head at < 15522 cm–1, a harmonic …


Theoretical Study On Electrical Properties Of Molecular Junctions Of Viologen Derivatives, Zhuan-Yun Cai, Jia Liu, Si-Yuan Guan, De-Yin Wu, Zhong-Qun Tian Feb 2021

Theoretical Study On Electrical Properties Of Molecular Junctions Of Viologen Derivatives, Zhuan-Yun Cai, Jia Liu, Si-Yuan Guan, De-Yin Wu, Zhong-Qun Tian

Journal of Electrochemistry

In this paper, the electrical properties of molecular junctions formed N,N′-bis(4-thioalkyl)-4,4′-bipyridinium (viologen) moiety between two gold (Au) electrodes have been investigated by combining density functional theory and non-equilibrium Green’s functional approach. To modulate the viologen molecule to be a cation with one and two positive charges (V+ and V2+), we introduce one and two trifluoroacetic acid ions (TFA-) around the molecule, respectively. The valence states of V+ and V2+ are confirmed by checking Mulliken and NBO charges. Then the relationship between molecular conductance and electronic structures of the neutral state V, the radical state V+ and dication …


Computational Catalyst Discovery: Active Classification Through Myopic Multiscale Sampling, Kevin Tran, Willie Neiswanger, Kirby Broderick, Eric Xing, Jeff Schneider, Zachary W. Ulissi Feb 2021

Computational Catalyst Discovery: Active Classification Through Myopic Multiscale Sampling, Kevin Tran, Willie Neiswanger, Kirby Broderick, Eric Xing, Jeff Schneider, Zachary W. Ulissi

Machine Learning Faculty Publications

The recent boom in computational chemistry has enabled several projects aimed at discovering useful materials or catalysts. We acknowledge and address two recurring issues in the field of computational catalyst discovery. First, calculating macro-scale catalyst properties is not straightforward when using ensembles of atomic-scale calculations [e.g., density functional theory (DFT)]. We attempt to address this issue by creating a multi-scale model that estimates bulk catalyst activity using adsorption energy predictions from both DFT and machine learning models. The second issue is that many catalyst discovery efforts seek to optimize catalyst properties, but optimization is an inherently exploitative objective that is …