Open Access. Powered by Scholars. Published by Universities.®

Physical Processes Commons

Open Access. Powered by Scholars. Published by Universities.®

2014

Discipline
Institution
Keyword
Publication
Publication Type

Articles 1 - 17 of 17

Full-Text Articles in Physical Processes

Scale-Up Methodology For Bench-Scale Slurry Photocatalytic Reactors Using Combined Irradiation And Kinetic Modelling, Patricio J. Valades Pelayo Dec 2014

Scale-Up Methodology For Bench-Scale Slurry Photocatalytic Reactors Using Combined Irradiation And Kinetic Modelling, Patricio J. Valades Pelayo

Electronic Thesis and Dissertation Repository

The present study focuses on developing a predictive methodology to scale-up a slurry annular photoreactor using a TiO2 Degussa P25 from the bench-scale to a pilot-plant scale. The bench-scale photoreactor is a Photo-CREC-Water II, a 2.65 L internally-irradiated slurry annular photocatalytic reactor. The pilot-plant scale photoreactor is a Photo-CREC Water Solar Simulator, a 9.8 L pilot-plant photoreactor, externally irradiated by eight lamps.

The adopted methodology allows the independent validation of radiative and kinetic models avoiding cross-correlation issues. The proposed approach involves two Monte Carlo methods, to model the Radiative Transfer Equation (RTE) inside each photoreactor. With this end, a …


Pulsar J0453+1559, The 10th Double Neutron Star System In The Universe, Jose Guadalupe Martinez Nov 2014

Pulsar J0453+1559, The 10th Double Neutron Star System In The Universe, Jose Guadalupe Martinez

Theses and Dissertations - UTB/UTPA

Pulsars are neutron stars that spin rapidly, are highly magnetized, and they emit beams of electromagnetic radiation like a lighthouse out in space. These beams of radiation are only observed when the beams face towards Earth and can be measured by a radio telescope. Pulsar studies have an abundance of scientific implementations in solid state physics, general relativity, galactic astronomy, astronomy, planetary physics and have even opened windows in cosmology. This thesis reports the results of a study of pulsar (PSR) J0453+1559, a new binary pulsar discovered in the Arecibo All-Sky 327 MegaHertz Drift Pulsar Survey. The recorded observations of …


A Spectroscopic Survey Of Wise -Selected Obscured Quasars With The Southern African Large Telescope, Kevin N. Hainline, Ryan C. Hickox, Christopher M. Carroll, Adam D. Myers Oct 2014

A Spectroscopic Survey Of Wise -Selected Obscured Quasars With The Southern African Large Telescope, Kevin N. Hainline, Ryan C. Hickox, Christopher M. Carroll, Adam D. Myers

Dartmouth Scholarship

We present the results of an optical spectroscopic survey of a sample of 40 candidate obscured quasars identified on the basis of their mid-infrared emission detected by the Wide-Field Infrared Survey Explorer (WISE). Optical spectra for this survey were obtained using the Robert Stobie Spectrograph on the Southern African Large Telescope. Our sample was selected with WISE colors characteristic of active galactic nuclei (AGNs), as well as red optical to mid-IR colors indicating that the optical/UV AGN continuum is obscured by dust. We obtain secure redshifts for the majority of the objects that comprise our sample (35/40), and …


Intensities, Broadening And Narrowing Parameters In The Ν3 Band Of Methane, Et-Touhami Es-Sebbar, Aamir Farooq Aug 2014

Intensities, Broadening And Narrowing Parameters In The Ν3 Band Of Methane, Et-Touhami Es-Sebbar, Aamir Farooq

Dr. Et-touhami Es-sebbar

The P-branch of methane׳s ν3 band is probed to carry out an extensive study of the 2905–2908 cm−1 infrared spectral region. Absolute line intensities as well as N2-, O2-, H2-, He-, Ar- and CO2-broadening coefficients are determined for nine transitions at room temperature. Narrowing parameters due to the Dicke effect have also been investigated. A narrow emission line-width (~0.0001 cm−1) difference-frequency-generation (DFG) laser system is used as the tunable light source. To retrieve the CH4 spectroscopic parameters, Voigt and Galatry profiles were used to simulate the measured line shape of the individual transitions.


Environmental Testing Of Lasers For Jpl's Cold Atom Laboratory, Carey L. Baxter Aug 2014

Environmental Testing Of Lasers For Jpl's Cold Atom Laboratory, Carey L. Baxter

STAR Program Research Presentations

NASA’s Cold Atom Lab (CAL) is a multi-user facility designed to study ultra-cold quantum gases in the microgravity environment of the International Space Station (ISS). One of the main goals of CAL is to explore the unknown territory of extremely low temperatures—possibly as low as the picokelvin range!—where new and fascinating quantum phenomena can be observed. At such temperatures matter stops behaving as particles and instead becomes macroscopic matter waves. CAL will be remotely controlled to perform a multitude of experiments and is scheduled to launch in 2016. In order to anticipate problems that might occur during and post-launch, including …


Observational And Theoretical Investigation Of Cylindrical Line Source Blast Theory Using Meteors, Elizabeth A. Silber Jun 2014

Observational And Theoretical Investigation Of Cylindrical Line Source Blast Theory Using Meteors, Elizabeth A. Silber

Electronic Thesis and Dissertation Repository

During their passage through the atmosphere meteoroids produce a hypersonic shock which may be recorded at the ground in the form of infrasound. The first objective of this project was to use global infrasound measurements to estimate the influx of large (meter/decameter) objects to Earth and investigate which parameters of their ablation and disruption can be determined using infrasound records. A second objective was to evaluate and extend existing cylindrical line source blast theory for meteoroids by combining new observations with earlier analytical models, and validate these against centimetre-sized optical meteor observations.

The annual terrestrial influx of large meteoroids (kinetic …


Gemini Long-Slit Observations Of Luminous Obscured Quasars: Further Evidence For An Upper Limit On The Size Of The Narrow-Line Region, Kevin N. Hainline, Ryan C. Hickox, Jenny E. Greene, Adam D. Myers May 2014

Gemini Long-Slit Observations Of Luminous Obscured Quasars: Further Evidence For An Upper Limit On The Size Of The Narrow-Line Region, Kevin N. Hainline, Ryan C. Hickox, Jenny E. Greene, Adam D. Myers

Dartmouth Scholarship

We examine the spatial extent of the narrow-line regions (NLRs) of a sample of 30 luminous obscured quasars at 0.4 < z < 0.7 observed with spatially resolved Gemini-N GMOS long-slit spectroscopy. Using the [O III] λ5007 emission feature, we estimate the size of the NLR using a cosmology-independent measurement: the radius where the surface brightness falls to 10–15 erg s–1 cm–2 arcsec–2. We then explore the effects of atmospheric seeing on NLR size measurements and conclude that direct measurements of the NLR size from observed profiles are too large by 0.1-0.2 dex on average, as compared to measurements made to best-fit Sérsic or Voigt profiles convolved with the seeing. These data, which span a full order of magnitude in IR luminosity (log (L 8 μm/erg s–1) = 44.4-45.4), …


Star Formation And Substructure In Galaxy Clusters, Seth A. Cohen, Ryan C. Hickox, Gary A. Wegner, Maret Einasto, Jaan Vennik Feb 2014

Star Formation And Substructure In Galaxy Clusters, Seth A. Cohen, Ryan C. Hickox, Gary A. Wegner, Maret Einasto, Jaan Vennik

Dartmouth Scholarship

We investigate the relationship between star formation (SF) and substructure in a sample of 107 nearby galaxy clusters using data from the Sloan Digital Sky Survey (SDSS). Several past studies of individual galaxy clusters have suggested that cluster mergers enhance cluster SF, while others find no such relationship. The SF fraction in multi-component clusters (0.228 +/- 0.007) is higher than that in single-component clusters (0.175 +/- 0.016) for galaxies with M^0.1_r < -20.5. In both single- and multi-component clusters, the fraction of star-forming galaxies increases with clustercentric distance and decreases with local galaxy number density, and multi-component clusters show a higher SF fraction than single-component clusters at almost all clustercentric distances and local densities. Comparing the SF fraction in individual clusters to several statistical measures of substructure, we find weak, but in most cases significant at greater than 2 sigma, correlations between substructure and SF fraction. These results could indicate that cluster mergers may cause weak but significant SF enhancement in clusters, or unrelaxed clusters exhibit slightly stronger SF due to their less evolved states relative to relaxed clusters.


Tracing The Evolution Of Active Galactic Nuclei Host Galaxies Over The Last 9 Gyr Of Cosmic Time, A. D. Goulding, W. R. Forman, R. C. Hickox, C. Jones Feb 2014

Tracing The Evolution Of Active Galactic Nuclei Host Galaxies Over The Last 9 Gyr Of Cosmic Time, A. D. Goulding, W. R. Forman, R. C. Hickox, C. Jones

Dartmouth Scholarship

We present the results of a combined galaxy population analysis for the host galaxies of active galactic nuclei (AGN) identified at 0 < z < 1.4 within the Sloan Digital Sky Survey, Boötes, and DEEP2 surveys. We identified AGN in a uniform and unbiased manner at X-ray, infrared, and radio wavelengths. Supermassive black holes undergoing radiatively efficient accretion (detected as X-ray and/or infrared AGN) appear to be hosted in a separate and distinct galaxy population than AGN undergoing powerful mechanically dominated accretion (radio AGN). Consistent with some previous studies, radiatively efficient AGN appear to be preferentially hosted in modest star-forming galaxies, with little dependence on AGN or galaxy luminosity. AGN exhibiting radio-emitting jets due to mechanically dominated accretion are almost exclusively observed in massive, passive galaxies. Crucially, we now provide strong evidence that the observed host-galaxy trends are independent of redshift. In particular, these different accretion-mode AGN have remained as separate galaxy populations throughout the last 9 Gyr. Furthermore, it appears that galaxies hosting AGN have evolved along the same path as galaxies that are not hosting AGN with little evidence for distinctly separate evolution.


Black Hole Variability And The Star Formation-Active Galactic Nucleus Connection: Do All Star-Forming Galaxies Host An Active Galactic Nucleus?, Ryan C. Hickox, James R. Mullaney, David M. Alexander, Chien-Ting J. Chen, Francesca M. Civano, Andy D. Goulding, Kevin N. Hainline Jan 2014

Black Hole Variability And The Star Formation-Active Galactic Nucleus Connection: Do All Star-Forming Galaxies Host An Active Galactic Nucleus?, Ryan C. Hickox, James R. Mullaney, David M. Alexander, Chien-Ting J. Chen, Francesca M. Civano, Andy D. Goulding, Kevin N. Hainline

Dartmouth Scholarship

We investigate the effect of active galactic nucleus (AGN) variability on the observed connection between star formation and black hole accretion in extragalactic surveys. Recent studies have reported relatively weak correlations between observed AGN luminosities and the properties of AGN hosts, which has been interpreted to imply that there is no direct connection between AGN activity and star formation. However, AGNs may be expected to vary significantly on a wide range of timescales (from hours to Myr) that are far shorter than the typical timescale for star formation (100 Myr). This variability can have important consequences for observed correlations. We …


The Structure Of Broad Line Region And The Effects Of Cooling Function In Active Galactic Nuclei, Ye Wang Jan 2014

The Structure Of Broad Line Region And The Effects Of Cooling Function In Active Galactic Nuclei, Ye Wang

Theses and Dissertations--Physics and Astronomy

Active Galactic Nuclei (AGNs) are the most mystic objects in the universe. They are usually very far away from our Galaxy, which means that they are ancient objects. They are also luminous and have unique features in their spectra. Studying AGNs helps understanding the early universe and the evolution of galaxies. This Dissertation aims to research the structure of AGNs and the cooling function in the AGNs environment.

I first investigate what optical/ultraviolet spectroscopic features would be produced by Broad-line Region (BLR) clouds crossing our line of sight to the accretion disk, the source of the optical/UV continuum. This research, …


Modeling Ionized And Molecular Regions Of The Interstellar Medium Using The Spectral Synthesis Code Cloudy, Gururaj Wagle Jan 2014

Modeling Ionized And Molecular Regions Of The Interstellar Medium Using The Spectral Synthesis Code Cloudy, Gururaj Wagle

Theses and Dissertations--Physics and Astronomy

The focus of this dissertation is to study the star-forming regions of the interstellar medium (ISM), using two very diverse environments: the Polaris Flare, high-galactic latitude, cirrus cloud complex consisting of several starless molecular cores with no nearby hot stars; and the Orion Nebula, which is the closest massive star forming region. The two environments provide a wide range of physical conditions.

It is commonly assumed that the Herschel far-infrared (FIR) fluxes are a good measure of column density, hence, mass of interstellar clouds. We find that the FIR fluxes are insensitive to the column density if AV ≳ …


Reevaluation Of The Aapm Tg-43 Brachytherapy Dosimetry Parameters For An 125I Seed, And The Influence Of Eye Plaque Design On Dose Distributions And Dose-Volume Histograms, Prakash Aryal Jan 2014

Reevaluation Of The Aapm Tg-43 Brachytherapy Dosimetry Parameters For An 125I Seed, And The Influence Of Eye Plaque Design On Dose Distributions And Dose-Volume Histograms, Prakash Aryal

Theses and Dissertations--Physics and Astronomy

The TG-43 dosimetry parameters of the AdvantageTM 125I model IAI-125A brachytherapy seed were studied. An investigation using modern MCNP radiation transport code with updated cross-section libraries was performed. Twelve different simulation conditions were studied for a single seed by varying the coating thickness, mass density, photon energy spectrum and cross-section library. The dose rate was found to be 6.3% lower at 1 cm in comparison to published results. New TG-43 dosimetry parameters are proposed.

The dose distribution for a brachytherapy eye plaque, model EP917, was investigated, including the effects of collimation from high-Z slots. Dose distributions for …


Molecular Opacities For Exoplanets, P. F. Bernath Jan 2014

Molecular Opacities For Exoplanets, P. F. Bernath

Chemistry & Biochemistry Faculty Publications

Spectroscopic observations of exoplanets are now possible by transit methods and direct emission. Spectroscopic requirements for exoplanets are reviewed based on existing measurements and model predictions for hot Jupiters and super-Earths. Molecular opacities needed to simulate astronomical observations can be obtained from laboratory measurements, ab initio calculations or a combination of the two approaches. This discussion article focuses mainly on laboratory measurements of hot molecules as needed for exoplanet spectroscopy.


Binary Star Light Curve And Model Of Tyc 3670-588-1 From Professional-Amateur Collaboration, A, J. W. Robertson, B. Mcmath, D. Waters, R. T. Campbell, G. Roberts Jan 2014

Binary Star Light Curve And Model Of Tyc 3670-588-1 From Professional-Amateur Collaboration, A, J. W. Robertson, B. Mcmath, D. Waters, R. T. Campbell, G. Roberts

Journal of the Arkansas Academy of Science

We present the orbital light curve and model system parameters of a newly discovered eclipsing binary star in the constellation of Perseus. Our professional-amateur astronomy collaboration between Arkansas Tech University (ATU), the Central Arkansas Astronomy Society (CAAS) and Whispering Pine Observatory, produced photometry in two wavelengths (Johnson V and R) in order to model the system for fundamental parameters with a binary modeling code. We determined that this binary system contains two F-type stars orbiting each other with a short orbital period and having the following characteristics for the two components: mass ratio (q ~ 0.92), temperatures (T1~ 7170 K, …


Study Of The Relation Between The Spiral Arm Pitch Angle And The Kinetic Energy Of Random Motions Of The Host Spiral Galaxies, A, I. Al-Baidhany, M. Seigar, P. Treuthardt, A. Sierra, B. Davis, D. Kennefick, J. Kennefick, C. Lacy, Z. A. Toma, W. Jabbar Jan 2014

Study Of The Relation Between The Spiral Arm Pitch Angle And The Kinetic Energy Of Random Motions Of The Host Spiral Galaxies, A, I. Al-Baidhany, M. Seigar, P. Treuthardt, A. Sierra, B. Davis, D. Kennefick, J. Kennefick, C. Lacy, Z. A. Toma, W. Jabbar

Journal of the Arkansas Academy of Science

In this work, we report a relation between the kinetic energy of random motions of the corresponding host galaxies and spiral arm pitch angles (Mdynσ2- P), (M*σ2- P) where Mdyn is the bulge dynamical mass, M* is bulge stellar mass, and σ is the velocity dispersion of the host galaxy bulge. We measured the spiral arm pitch angle (P) for a sample of Spitzer/IRAC 3.6-μm images of 54 spiral galaxies, estimated by using a 2D Fast Fourier Transform decomposition technique (2DFFT). We selected a sample of nearly face-on spiral galaxies and used IRAF ellipse to determine the ellipticity and major-axis …


Proceedings Of The First International Conference On Superluminal Physics & Instantaneous Physics As New Fields Of Research, Florentin Smarandache Jan 2014

Proceedings Of The First International Conference On Superluminal Physics & Instantaneous Physics As New Fields Of Research, Florentin Smarandache

Branch Mathematics and Statistics Faculty and Staff Publications

In a similar way as passing from Euclidean Geometry to Non-Euclidean Geometry, we can pass from Subluminal Physics to Superluminal Physics, and further to Instantaneous Physics (instantaneous traveling). In the lights of two consecutive successful CERN experiments with superluminal particles in the fall of 2011, we believe these two new fields of research should begin developing. A physical law has a form in Newtonian physics, another form in the Relativity Theory, and different form at Superluminal theory, or at Instantaneous (infinite) speeds – according to the S-Denying Theory spectrum. First, we extend physical laws and formulas to superluminal traveling and …